Advertisement

Influence of microfibers length on PDLA/cellulose microfibers biocomposites crystallinity and properties

  • Khadija Mbarki
  • Rodrigue Matadi Boumbimba
  • Adel Sayari
  • Boubaker Elleuch
Original Paper
  • 41 Downloads

Abstract

Numerous researches have paid attention to biocomposites. Biocomposite material can be defined as a composite material obtained by products derived from renewable resources such as polylactide acid. The aim of this work was to study biodegradable composites prepared by using cellulose microfibrils (CMFs) as the reinforcement and poly (d-lactic) acid as a matrix. Five average fiber lengths, from 8 to 300 μm, were used for the biocomposite preparation. The thermomechanical properties, crystallization, and the composites morphology were characterized by the means of dynamic mechanical thermal analysis (DMTA), tensile test device, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. The effect of fiber length on the thermomechanical properties and crystallinity rate of the composites was investigated. The DMTA results showed that the storage modulus increases with the addition of CMFs. The X-ray diffraction studies, performed on the biocomposites, showed that the crystallinity rate of the blends was improved.

Keywords

PDLA Cellulose fiber Melt molding Biocomposites DMTA SEM 

Notes

Acknowledgements

Special thanks goes to the financial support from Ministry of High Education for my Ph.D. (Tunisia).

References

  1. 1.
    Mathew AP, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101:300–310.  https://doi.org/10.1002/app.23346 CrossRefGoogle Scholar
  2. 2.
    Hoidy WH, Ahmad MB, Al-Mulla EAJ, Ibrahim NAB (2010) Preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites. J Appl Sci 10:97–106.  https://doi.org/10.3923/jas.2010.97.106 CrossRefGoogle Scholar
  3. 3.
    Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602.  https://doi.org/10.1016/j.progpolymsci.2006.03.002 CrossRefGoogle Scholar
  4. 4.
    Araújo A, Oliveira M, Oliveira R et al (2014) Biodegradation assessment of PLA and its nanocomposites. Environ Sci Pollut Res 21:9477–9486.  https://doi.org/10.1007/s11356-013-2256-y CrossRefGoogle Scholar
  5. 5.
    Shi N, Dou Q (2014) Crystallization behavior, morphology, and mechanical properties of poly(lactic acid)/tributyl citrate/treated calcium carbonate composites. Polym Compos 35:1570–1582.  https://doi.org/10.1002/pc.22810 CrossRefGoogle Scholar
  6. 6.
    Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025.  https://doi.org/10.1002/app.21779 CrossRefGoogle Scholar
  7. 7.
    Jamshidian M, Tehrany EA, Imran M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571.  https://doi.org/10.1111/j.1541-4337.2010.00126.x CrossRefGoogle Scholar
  8. 8.
    Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Zhao H, Bian Y, Li Y et al (2014) Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J Mater Chem A 2:8881.  https://doi.org/10.1039/c4ta01194e CrossRefGoogle Scholar
  10. 10.
    Castro-Aguirre E, Iñiguez-Franco F, Samsudin H et al (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2016.03.010 CrossRefPubMedGoogle Scholar
  11. 11.
    Harada M, Ohya T, Iida K et al (2007) Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106:1813–1820.  https://doi.org/10.1002/app.26717 CrossRefGoogle Scholar
  12. 12.
    Jing Z, Shi X, Zhang G et al (2016) Formation, structure and promoting crystallization capacity of stereocomplex crystallite network in the poly(lactide) blends based on linear PLLA and PDLA with different structures. Polymer 92:210–221.  https://doi.org/10.1016/j.polymer.2016.04.001 CrossRefGoogle Scholar
  13. 13.
    Sahari J, Sapuan SM (2011) Natural fibre reinforced biodegradable polymer composites. Rev Adv Mater Sci 30:166–174Google Scholar
  14. 14.
    Gelineau P, Stepień M, Weigand S et al (2015) Elastic properties prediction of nano-clay reinforced polymer using multi-scale modeling based on a multi-scale characterization. Mech Mater 89:12–22.  https://doi.org/10.1016/j.mechmat.2015.03.013 CrossRefGoogle Scholar
  15. 15.
    Yang S, Wu Z-H, Yang W, Yang M-B (2008) Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test 27:957–963.  https://doi.org/10.1016/j.polymertesting.2008.08.009 CrossRefGoogle Scholar
  16. 16.
    Murariu M, Dubois P (2016) PLA composites: from production to properties. Adv Drug Deliv Rev 107:17–46.  https://doi.org/10.1016/j.addr.2016.04.003 CrossRefPubMedGoogle Scholar
  17. 17.
    Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597.  https://doi.org/10.1002/mabi.200500062 CrossRefPubMedGoogle Scholar
  18. 18.
    Yu B, Cao Y, Sun H, Han J (2016) The structure and properties of biodegradable PLLA/PDLA for melt-blown nonwovens. J Polym Environ.  https://doi.org/10.1007/s10924-016-0827-y CrossRefGoogle Scholar
  19. 19.
    Masmoudi F, Bessadok A, Dammak M et al (2016) Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose. Environ Sci Pollut Res 23:20904–20914.  https://doi.org/10.1007/s11356-016-7276-y CrossRefGoogle Scholar
  20. 20.
    Oksman K, Selin J-F (2004) Plastics and composites from polylactic acid. In: Wallenberger FT, Weston NE (eds) Natural fibers, plastics and composites. Springer, Boston, MA, pp 149–165CrossRefGoogle Scholar
  21. 21.
    Avérous L (2008) Polylactic acid: synthesis, properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 433–450CrossRefGoogle Scholar
  22. 22.
    Fortunati E, Armentano I, Iannoni A, Kenny JM (2010) Development and thermal behaviour of ternary PLA matrix composites. Polym Degrad Stab 95:2200–2206.  https://doi.org/10.1016/j.polymdegradstab.2010.02.034 CrossRefGoogle Scholar
  23. 23.
    Zhang W, Yang X, Li C et al (2011) Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydr Polym 83:257–263.  https://doi.org/10.1016/j.carbpol.2010.07.062 CrossRefGoogle Scholar
  24. 24.
    Fu S-Y, Lauke B (1996) Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos Sci Technol 56:1179–1190.  https://doi.org/10.1016/S0266-3538(96)00072-3 CrossRefGoogle Scholar
  25. 25.
    Lin T, Jia D, He P et al (2008) Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites. Mater Sci Eng A 497:181–185.  https://doi.org/10.1016/j.msea.2008.06.040 CrossRefGoogle Scholar
  26. 26.
    Rezaei F, Yunus R, Ibrahim NA (2009) Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des 30:260–263.  https://doi.org/10.1016/j.matdes.2008.05.005 CrossRefGoogle Scholar
  27. 27.
    Said HM (2013) Effects of gamma irradiation on the crystallization, thermal and mechanical properties of poly(l-lactic acid)/ethylene-co-vinyl acetate blends. J Radiat Res Appl Sci 6:11–20.  https://doi.org/10.1016/j.jrras.2013.10.001 CrossRefGoogle Scholar
  28. 28.
    Xiao H, Lu W, Yeh J-T (2009) Effect of plasticizer on the crystallization behavior of poly(lactic acid). ResearchGate 113:112–121.  https://doi.org/10.1002/app.29955 CrossRefGoogle Scholar
  29. 29.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  30. 30.
    Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563.  https://doi.org/10.1007/s10570-005-9001-8 CrossRefGoogle Scholar
  31. 31.
    Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzing Ber 89:118–131Google Scholar
  32. 32.
    Chandrahasa R, Rajamane NP, Jeyalakshmi R (2014) Development of cellulose nanofibres from coconut husk. IJETAE 4:88–93Google Scholar
  33. 33.
    Tsyganova S, Mazurova E, Bondarenko G, Chesnokov N (2016) Influence of prolonged exposure of wood to water on wood structure and biochar properties. Wood Sci Technol 50:963–972.  https://doi.org/10.1007/s00226-016-0831-3 CrossRefGoogle Scholar
  34. 34.
    Oksman K, Skrifvars M, Selin J-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324.  https://doi.org/10.1016/S0266-3538(03)00103-9 CrossRefGoogle Scholar
  35. 35.
    Li L, Frey M, Browning KJ (2010) Biodegradability study on cotton and polyester fabrics. J Eng Fibers Fabr J Eng Fibers Fabr 5:42–53Google Scholar
  36. 36.
    Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization. Cellul Chem Technol 45:13–21Google Scholar
  37. 37.
    Poletto M, Pistor V, Zattera AJ (2013) Structural characteristics and thermal properties of native cellulose. Cellul Fundam Asp.  https://doi.org/10.5772/50452 CrossRefGoogle Scholar
  38. 38.
    Poletto M, Pistor V, Santana RMC, Zattera AJ (2012) Materials produced from plant biomass: part II: evaluation of crystallinity and degradation kinetics of cellulose. Mater Res 15:421–427.  https://doi.org/10.1590/S1516-14392012005000048 CrossRefGoogle Scholar
  39. 39.
    Liu C, Wong H, Yeung K, Tjong S (2016) Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility. Polymers 8:287.  https://doi.org/10.3390/polym8080287 CrossRefGoogle Scholar
  40. 40.
    Signori F, Coltelli M-B, Bronco S (2009) Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82.  https://doi.org/10.1016/j.polymdegradstab.2008.10.004 CrossRefGoogle Scholar
  41. 41.
    Kim B-S, Park KE, Park WH, Lee J (2013) Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation. Biomed Mater Bristol Engl 8:045006.  https://doi.org/10.1088/1748-6041/8/4/045006 CrossRefGoogle Scholar
  42. 42.
    Anwer MAS, Naguib HE (2016) Study on the morphological, dynamic mechanical and thermal properties of PLA carbon nanofibre composites. Compos Part B Eng 91:631–639.  https://doi.org/10.1016/j.compositesb.2016.01.039 CrossRefGoogle Scholar
  43. 43.
    Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482.  https://doi.org/10.1016/j.progpolymsci.2007.01.005 CrossRefGoogle Scholar
  44. 44.
    Capela C, Oliveira SE, Pestana J, Ferreira JAM (2017) Effect of fiber length on the mechanical properties of high dosage carbon reinforced. Proc Struct Integr 5:539–546.  https://doi.org/10.1016/j.prostr.2017.07.159 CrossRefGoogle Scholar
  45. 45.
    Lila MK, Saini GK, Kannan M, Singh I (2017) Effect of fiber type on thermal and mechanical behavior of epoxy based composites. Fibers Polym 18:806–810.  https://doi.org/10.1007/s12221-017-1147-0 CrossRefGoogle Scholar
  46. 46.
    Sobhy MS, Tammam MT (2010) The influence of fiber length and concentration on the physical properties of wheat husk fibers rubber composites. Int J Polym Sci. https://www.hindawi.com/journals/ijps/2010/528173/. Accessed 22 Dec 2017
  47. 47.
    Awa K, Shinzawa H, Ozaki Y (2015) The effect of microcrystalline cellulose crystallinity on the hydrophilic property of tablets and the hydrolysis of acetylsalicylic acid as active pharmaceutical ingredient inside tablets. AAPS PharmSciTech 16:865–870.  https://doi.org/10.1208/s12249-014-0276-7 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Guinault A, Sollogoub C, Domenek S et al (2010) Influence of crystallinity on gas barrier and mechanical properties of PLA food packaging films. Int J Mater Form 3:603–606CrossRefGoogle Scholar
  49. 49.
    Spiridon I, Darie RN, Kangas H (2016) Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Compos Part B Eng 92:19–27.  https://doi.org/10.1016/j.compositesb.2016.02.032 CrossRefGoogle Scholar
  50. 50.
    Mabrouk AB, Ferraria AM, do Rego AMB, Boufi S (2013) Highly transparent nancomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystals. Cellulose 20:1711–1723.  https://doi.org/10.1007/s10570-013-9916-4 CrossRefGoogle Scholar
  51. 51.
    Choi D, Nix WD (2006) Anelastic behavior of copper thin films on silicon substrates: damping associated with dislocations. Acta Mater 54:679–687.  https://doi.org/10.1016/j.actamat.2005.10.003 CrossRefGoogle Scholar
  52. 52.
    Nishino Y, Tanahashi K, Asano S (1995) Analysis of strain-amplitude-dependent internal friction in thin-layer materials. Philos Mag A 71:139–148.  https://doi.org/10.1080/01418619508242961 CrossRefGoogle Scholar
  53. 53.
    Stajic-Trosic J, Stijepovic M, Stevanovic J et al (2011) Magnetic and dynamic mechanical properties of Nd–Fe–B composite materials with polymer matrix.  https://doi.org/10.5772/18599
  54. 54.
    Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part Appl Sci Manuf 83:98–112.  https://doi.org/10.1016/j.compositesa.2015.08.038 CrossRefGoogle Scholar
  55. 55.
    Hablot E, Matadi R, Ahzi S et al (2010) Renewable biocomposites of soy-based polyamides with cellulose fibres: thermal, physical and mechanical properties. Compos Sci Technol 70:504–509CrossRefGoogle Scholar
  56. 56.
    Jumaidin R, Sapuan SM, Jawaid M et al (2017) Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. Int J Biol Macromol 97:606–615.  https://doi.org/10.1016/j.ijbiomac.2017.01.079 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Environmental Engineering and EcoTechnology (LGEET), National School of Engineering of Sfax (ENIS)Sfax UniversitySfaxTunisia
  2. 2.LEM3, UMR 7239, CNRSUniversity of LorraineMetzFrance
  3. 3.Biological Engineering Department, National School of Engineering of Sfax (ENIS)Sfax UniversitySfaxTunisia

Personalised recommendations