Advertisement

Current trends and concepts in the design and development of nanogel carrier systems

  • P. N. Kendre
  • T. S. Satav
Review
  • 40 Downloads

Abstract

Nanotechnology, a relatively novel technique, has much potential in smart drug delivery. Development of novel nanosized particulate drug delivery systems (DDS) may help in disease prevention, diagnosis, and treatment of many of the important diseases. Nanogels have particle sizes in the 0–100 nm range, and the three-dimensional network is maintained by varying the solvent quality. This review article describes concisely the current trends and concepts involved in the design and development of nanogel DDS. This review also explores the various approaches of drug loading, release mechanisms, characterization, and biomedical applications. Optimized nanogel systems can be developed on the basis of the site of action and pattern of drug release desired for improved therapeutic benefits. This can be achieved by using the appropriate method of preparation (physical or chemical) and drug loading mechanism by modifying the geometry and surface of the nanogels. The properties of nanogels are dependent on the constituent materials/components (synthetic or natural) and on external stimuli (pH, temperature, ionic strength or incorporation of hydrophilic residues) in the case of stimuli-sensitive nanogels. Due to the high stability, biodegradability, biocompatibility, large surface area, and minimal resources required for manufacture of nanogels, their applications (such as in oral, pulmonary, nasal, ocular, and topical routes) have gained special attention in the development of pharmaceutical drug carriers.

Graphical abstract

Keywords

Nanogels Cross-linking Release mechanism Carrier system Stimuli responsive Biocompatible 

References

  1. 1.
    Logothetidis S (eds) (2012) Nanostructured materials and their applications, nanoscience and technology, pp 1–20.  https://doi.org/10.1007/978-3-642-22227-6-1
  2. 2.
    Iordana N, Alina GR, Alina D et al (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24(1):539–557.  https://doi.org/10.1080/10717544.2016.1276232 CrossRefGoogle Scholar
  3. 3.
    Nita LE, Chiriac AP, Diaconu A et al (2016) Multifunctional nanogel with dual temperature and pH responsiveness. Int J Pharm 9(1–2):165–175CrossRefGoogle Scholar
  4. 4.
    Lai WF, He ZD (2016) Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release 243:269–282CrossRefPubMedGoogle Scholar
  5. 5.
    Patel H, Patel J (2010) Nanogel as controlled drug delivery. Int J Pharm Sci Rev Res 4(2):37–41Google Scholar
  6. 6.
    Vinogradov SV, Batrakova EV, Kabanov AV (1999) Poly (ethylene glycol) polyethyleneimine nanogel particles: novel drug delivery system for antisense oligonucleotides. Colloids Surf B Biointerfaces 16:291–304CrossRefGoogle Scholar
  7. 7.
    Dorwal D (2012) Nanogels as novel and versatile pharmaceuticals. Int J Pharm Sci 4(3):67–74Google Scholar
  8. 8.
    Shrinivas G, Ramnathkar P (2014) Polymer based microgels/nanogels: development & application in drug delivery. Am J Pharmatech Res 4(1):270–282Google Scholar
  9. 9.
    Soni G, Yadav KS (2016) Nanogels as potentioal nanomedicine carrier for treatment of cancer. A mini review of the state of the art. Suadi Pharm J 24(2):133–139CrossRefGoogle Scholar
  10. 10.
    Prasad K, Vijay G, Jayakumari N et al (2015) Nanogel as a smart vehicle for local drug delivery in dentistry. Am J Pharm Health Res 3(1):20–30Google Scholar
  11. 11.
    Rigogliuso S, Satatino MA, Adamo G et al (2012) Polymeric nanogels: nanocarriers for drug delivery application. Chem Eng Trans 27:247–252Google Scholar
  12. 12.
    Tan JP, Tan MB, Tam MK (2010) Application of nanogel systems in the administration of local anesthetics. Local Reg Anesth 3:93–100PubMedPubMedCentralGoogle Scholar
  13. 13.
    Daoud-Mahammed S, Couvreur P, Gref R (2007) Novel self-assembling nanogel’s stability and lyophilisation studies. Int J Pharm 332(1–2):185–191CrossRefPubMedGoogle Scholar
  14. 14.
    Escalona Rayo O, Quintanar Guerrero D (2014) Polymeric nanogels: a new alternative for drug delivery. Rev Mex Cienc Farm 45(3):17–38Google Scholar
  15. 15.
    Pich A, Richtering W (2012) Polymer nanogels and microgels. In: Matyjaszewski K, Moller M (eds) Polymer science: a comprehensive reference, vol 6. Elsevier, Amsterdam, pp 309–350CrossRefGoogle Scholar
  16. 16.
    Dong Y, Ng WK, Shen S et al (2013) Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr Polym 94(2):940–945CrossRefPubMedGoogle Scholar
  17. 17.
    Kabanov AV, Vinogradov SV (2009) Nanogel as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 48(30):5418–5429CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ferreira SA, Pereira P, Sampaio P et al (2011) Supramolecular assembled nanogel made of mannan. J Colloid Interface Sci 361(1):97–108CrossRefPubMedGoogle Scholar
  19. 19.
    Ohya Y, Shiratani M, Koayashi H et al (1994) Release behaviour of 5-Fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell-specific cytotoxicity. J Macromol Sci, Pure Appl Chem 31:629–642CrossRefGoogle Scholar
  20. 20.
    Nie G, Hah HJ, Kim G et al (2012) Hydrogel nanoparticles with covalently linked coomassie blue for brain tumour delineation visible to the surgeon. Small 8(6):884–891CrossRefPubMedGoogle Scholar
  21. 21.
    Luo R, Cao Y, Shi P et al (2014) Near-infrared light responsive multicompartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface. Small 10(23):4886–4894CrossRefPubMedGoogle Scholar
  22. 22.
    Siepmann J, Peppas NA (2000) Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the “sequential layer” model). Pharm Res 17:1290–1298CrossRefPubMedGoogle Scholar
  23. 23.
    Chen T, Zhao D, Wei Y et al (2013) Core-shell nanocarriers with Zno quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym 92:1124–1132CrossRefPubMedGoogle Scholar
  24. 24.
    Kozlovskaya V, Alexander JF, Wang Y et al (2014) Internalization of red blood cell-mimicking hydrogel capsules with pH-triggered shape responses. ACS Nano 8(6):5725–5737CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticless for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456:31–40CrossRefPubMedGoogle Scholar
  26. 26.
    Wani T, Muzamil R, Kumar M et al (2004) Targeting aspects of nanogels: an overview. Int J Pharm Sci Nanotech 7(4):2613–2614Google Scholar
  27. 27.
    Singh N, Gill V, Gill P (2013) Nanogel based artificial chaperone technology: an overview. Am J Adv Drug Deliv 1(3):271–276Google Scholar
  28. 28.
    Rossetti H, Albizzati D, Alfano M (2002) Decomposition of formic acid in a water solution employing the photo-fenton reaction. Ind Eng Chem Res 41:1436–1444CrossRefGoogle Scholar
  29. 29.
    Sultana F, Manirujjaman M, Imran-Ul-Haque MA et al (2013) An overview of nanogel drug delivery system. J Appl Pharm Sci 3(8):95–105Google Scholar
  30. 30.
    Adhikari B, Sowmya C, Reddy C (2016) Recent advances in nanogel drug delivery system. World J Pharm Pharma Sci 5(9):505–522Google Scholar
  31. 31.
    Akiyoshi K, Kang E, Kuromada S et al (2000) Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly (n-isopropylacrylamides). Macromolecules 33:3244–3249CrossRefGoogle Scholar
  32. 32.
    Gros L, Ringsdorf H, Schupp H (1981) Polymeric antitumor agents on a molecular and on a cellular level. Chem Angew 20:305–325CrossRefGoogle Scholar
  33. 33.
    Yong Y, Cheng H, Zhang Z et al (2008) Cellular internalization and in vivo tracking of thermosensitive luminescent micelles based on luminescent lanthanide chelate. Am Chem Soc 1(2):125–133Google Scholar
  34. 34.
    Park W, Park S, Na K (2010) Potential of self organizing nanogel with acetylated chondriotin sulfate as an anti-cancer drug carrier. Colloids Surf 79:501–518CrossRefGoogle Scholar
  35. 35.
    Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64:866–884CrossRefPubMedGoogle Scholar
  36. 36.
    Schwerdt A, Zintchenko A, Concia M et al (2008) Hyperthermia-induced targeting of thermosensitive gene carriers to tumors. Hum Gene Ther 19:1283–1292CrossRefPubMedGoogle Scholar
  37. 37.
    Rejinold NS, Chennazhi KP, Nair SV et al (2011) Biodegradable and thermo-sensitive chitosan-g-poly (n-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier. Carbohydr Polym 83:776–786CrossRefGoogle Scholar
  38. 38.
    Stocke NA, Arnold SM, Zach Hilt J (2015) Responsive hydrogel nanoparticles for pulmonary delivery. J Drug Deliv Sci Technol 29:143–151CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Patnaik S, Ashwani KS, Gandhi GR et al (2007) Photoregulation of drug release in azo-dextran nanogels. Int J Pharm 342:184–193CrossRefPubMedGoogle Scholar
  40. 40.
    LaConte L, Nitin N, Bao G (2005) Magnetic nanoparticle probes. Mater Today 8:32–38CrossRefGoogle Scholar
  41. 41.
    Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefPubMedGoogle Scholar
  42. 42.
    Blackburn WH, Dickerson EB, Smith MH et al (2009) Peptide-functionalized nanogels for targeted siRNA delivery. Bioconj Chem 20:960–968CrossRefGoogle Scholar
  43. 43.
    Bhuchar N, Sunasee R, Ishihara K et al (2012) Degradable thermoresponsive nanogels for protein encapsulation and controlled release. Bioconj Chem 23(1):75–83CrossRefGoogle Scholar
  44. 44.
    Choi WI, Lee JH, Kim JY et al (2012) Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J Control Release 157(2):272–278CrossRefPubMedGoogle Scholar
  45. 45.
    Maya S, Jayakumar R, Uthaman S (2014) Carbohydrate based nanogels as drug and gene delivery systems. J Nanosci Nanotech 14:696–697Google Scholar
  46. 46.
    Alles N, Soysa N, Hussain M et al (2009) Polysaccharide nanogel delivery of a TNF-α and RANKL antagonist peptide allows systemic prevention of bone loss. Euro J Pharm Sci 37:83–88CrossRefGoogle Scholar
  47. 47.
    Lee J, Kim J, Yoo H (2009) DNA nanogels composed of chitosan and pluronic with thermo-sensitive and photo crosslinking properties. Int J Pharm 373:93–99CrossRefPubMedGoogle Scholar
  48. 48.
    Jaiswal M, Banerjee R, Pradhan P et al (2010) Thermal behaviour of magnetically modalized poly (nisopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf 81(1):185–194CrossRefGoogle Scholar
  49. 49.
    Yan L, Tao W (2010) One step synthesis of paginated cationic nanogel of polly(n, n-dimethyl-aminoethyl methacrylate) in aqueous solution via self stabilizing micelle using an amphiphilic macro raft agent. Polymer 51:2161–2167CrossRefGoogle Scholar
  50. 50.
    Nukolova NV, Yang Z, Kim JO et al (2011) Polyelectrolyte nanogels decorated with monoclonal antibody for targeted drug delivery. React Funct Polym 71:315–323CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Eckmann DM, Composto RJ, Tsourkas A et al (2014) Nanogel carrier design for targeted drug delivery system. J Mater Chem B Mater Biol Med 2(46):8085–8097CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical application. Polymers 3(3):1215–1242CrossRefGoogle Scholar
  53. 53.
    Phatak A, Chaudhari P (2012) Development & evaluation of nanogel as carrier for transdermal drug delivery of aceclofenac. Asian J Pharm Tech 4(2):126–127Google Scholar
  54. 54.
    Avasatthi V, Pawar H, Dora C (2014) A novel nanogel formulation of methotrexate for topical treatment of psoriasis: optimization, in-vitro and in-vivo evaluation. Pharm Dev Technol 21(5):554–562Google Scholar
  55. 55.
    Khurana S, Bedi PM, Jain NK (2013) Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipids 175–176:65–72CrossRefPubMedGoogle Scholar
  56. 56.
    Lei Wu, Zhou Hui, Sun Hao-Jan et al (2013) Thermoresponsive bc whisker/poly (nipam-co-bma) nanogel complexes: synthesis, characterization. Biomacromolecules 14:1078–1084CrossRefGoogle Scholar
  57. 57.
    Mbuya V, Gupta N, Tashi T (2016) Application of nanogel’s in reduction of drug resistance in cancer chemotherapy. J Chem Pharm Res 8(2):561Google Scholar
  58. 58.
    Zhongming W, Xinge Z, Honglei G et al (2010) An injectable and glucose-sensitive nanogel for controlled insulin release. J Mater Chem 22:22788–22796Google Scholar
  59. 59.
    Vinogradov S, Batrakova E, Kabanov A (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 15(1):50–60CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Abd E, Swilem A, Klingner A et al (2004) Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly (acrylic acid) nano gel dispersions prepared by γ radiation. Biomacromolecules 4(3):688–698Google Scholar
  61. 61.
    Goel A, Ahmad F, Singh R et al (2009) Anti-Inflammatory activity of nanogel formulation of 3-acetyl-11-keto-β-boswellic acid. Pharmacologyonline 33:11–318Google Scholar
  62. 62.
    Michael L, Eric S, Qin A et al (2013) Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. J Clin Investig 123(4):1741–1749CrossRefGoogle Scholar
  63. 63.
    Daithankar A, Shiradkar M (2012) Thermoreversible anesthetic gel for periodontal intra-pocket delivery of mepivacaine hydrochloride. Der Pharmacia Letter 4(3):889–896Google Scholar
  64. 64.
    Jeremy P, Maureen B, Michael K (2010) Application of nanogel systems in the administration of local anesthetics. Local Reg Anesth 3:93–100Google Scholar
  65. 65.
    Sahoo C, Nayak P, Sarangi D et al (2013) Intra vaginal drug delivery system: an overview. Am J Adv Drug Deliv 1(1):43–55Google Scholar
  66. 66.
    Khan A, Saha C (2014) A review on vaginal drug delivery system. RGUHS J Pharm Sci 4:142–147CrossRefGoogle Scholar
  67. 67.
    Sreejan M, Uppadi S, Manasa R et al (2016) Bioadhesive HPMC gel containing gelatin nanoparticles for intravaginal delivery of tenofovir. J Appl Pharma Sci 6(8):22–29Google Scholar
  68. 68.
    Dorwal D (2012) Nanogels as novel and versatile pharmaceuticals. Int J Pharm Pharm Sci 4(3):67–74Google Scholar
  69. 69.
    Vinogradov SV, Batrakova EV, Kabanov AV (1999) Poly(ethylene glycol) polyethyleneimine Nanogel particles: novel drug delivery system for antisense oligonucleotides Coll. Surf B Biointerfaces 16:291–304CrossRefGoogle Scholar
  70. 70.
    Missirlis D, Tirelli N, Kawamura R et al (2005) Preparation, characterization and preliminary assessment as new colloidal drug carriers. Amphiphilic Hydrogel Nanoparticles 21:2605–2613Google Scholar
  71. 71.
    Alles N, Soysa NS, Hussain MD et al (2009) Polysaccharide nanogel delivery of a TNF-alpha and RANKL antagonist peptide allows systemic prevention of bone loss. Eur J Pharm Sci 37(2):83–88CrossRefPubMedGoogle Scholar
  72. 72.
    Yao Y, Xia M, Wang H et al (2016) Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Eur J Pharm Sci 91:144–153CrossRefPubMedGoogle Scholar
  73. 73.
    Yu S, Hu J, Pan X et al (2006) Stable and pH-sensitive nanogel’s prepared by self-assembly of chitosan and ovalbumin. Langmuir 22(6):2754–2759CrossRefPubMedGoogle Scholar
  74. 74.
    Yang HN, Choi JH, Park JS et al (2014) Differentiation of endothelial progenitor cells into endothelial cells by Heparin-modified supramolecular Pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes. Biomaterials 35(16):4716–4728CrossRefPubMedGoogle Scholar
  75. 75.
    Yang C, Wang X, Yao X et al (2015) Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Control Release 205:206–217CrossRefPubMedGoogle Scholar
  76. 76.
    Wu D, Wan M (2008) A novel fluorideanion modified gelatin nanogel system for ultrasound. J Pharm Pharm Sci 11(4):32–45CrossRefPubMedGoogle Scholar
  77. 77.
    Pourjavadi A, Hosseini SH, Alizadeh M et al (2014) Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of Doxorubicin. Colloids Surf B Biointerfaces 116:49–54CrossRefPubMedGoogle Scholar
  78. 78.
    Rossetti H, Albizzati D, Alfano M (2002) Decomposition of formic acid in a water solution employing the photo-fenton reaction. Ind Eng Chem Res 41:1436–1444CrossRefGoogle Scholar
  79. 79.
    Sultana F, Manirujjaman M, Imran-Ul-Haque MA et al (2013) An overview of nanogel drug delivery system. J Appl Pharm Sci 3(8):95–105Google Scholar
  80. 80.
    Ghorbaniazar P, Sepehrianazar A, Eskandani M et al (2015) Preparation of poly acrylic acid-poly acrylamide composite nanogels by radiation technique. Adv Pharm Bull 5(2):269–275CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Koul V, Mohamed R, Kuckling D et al (2011) Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse microemulsion technique: synthesis and characterization. Colloids Surf B Biointerfaces 83(2):204–213CrossRefPubMedGoogle Scholar
  82. 82.
    Rashed ER, Abd HA, EI Ghazaly MA (2015) Potential efficacy of dopamine loaded-PVP/PAA nanogel in experimental models of parkinsonism: possible disease modifying activity. J Biomed Mater Res A 103(5):1713–1720CrossRefPubMedGoogle Scholar
  83. 83.
    Ablomaali SS, Tamaddon AM, Mohammadi S et al (2016) Chemically crosslinked nanogels of PEGylated poly ethyleneimine (l-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: cytocompatibility, cellular delivery and antitumor activity in resistant cells. Mater Sci Eng, C 62:897–907CrossRefGoogle Scholar
  84. 84.
    Schiavo S, Duroudier N, Bilbao E et al (2017) Effects of PVP/PEI coated and uncoated silver nanoparticles and PVP/PEL coating agent on three species of marine microalgae. Sci Total Environ 577:45–53CrossRefPubMedGoogle Scholar
  85. 85.
    Liu T, Liu H, Wu Z et al (2014) The use of poly (methacrylic acid) nanogel to control the release of Amoxycillin with lower cytotoxicity. Mater Sci Eng C Mater Biol Appl 43:622–629CrossRefPubMedGoogle Scholar
  86. 86.
    Wu W, Shen J, Banerjee P et al (2010) Chitosan based responsive hybrid nanogel’s for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381CrossRefPubMedGoogle Scholar
  87. 87.
    Ekkelenkamp AE, Jansman MM, Roelofs K et al (2016) Surfactant free preparation of highly stable zwitterionic poly (amidoamine) nanogels with cytotoxicity. Acta Biomater 30:126–134CrossRefPubMedGoogle Scholar
  88. 88.
    Lockhart JN, Beezer DB, Stevens DM, Spears BR, Harth E (2016) One-pot polyglycidol nanogel’s via liposome master templates for dual drug delivery. J Control Release 244(Pt B):366–374CrossRefPubMedGoogle Scholar
  89. 89.
    Okur AC, Erkoc P, Kizilel S (2016) Targeting cancer cells via tumor-homing peptide CREKA functional PEG nanoparticles. Colloids Surf B Biointerfaces 147:197–200CrossRefGoogle Scholar
  90. 90.
    De Leon AS, Molina M, Wedepohl S et al (2016) Immobilization of stimuli-responsive nanogel’s onto honey comb porous surfaces and controlled release of proteins. Langmuir 32(7):1854–1862CrossRefPubMedGoogle Scholar
  91. 91.
    Sun H, Meng F, Cheng R, Deng C et al (2014) Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apotosis. Acta Biomater 10(5):2159–2168CrossRefPubMedGoogle Scholar
  92. 92.
    Lou S, Gao S, Wang W et al (2015) Galactose functionalized multi-responsive nanogels for hepatoma-targeted drug delivery. Nanoscale 7(7):3137–3146CrossRefPubMedGoogle Scholar
  93. 93.
    Ma K, Xu Y, An Z et al (2015) Templateless synthesis of polyacrylamide-based nanogels via RAFT dispersion polymerization. Macromol Rapid Common 36(6):566–570CrossRefGoogle Scholar
  94. 94.
    Abu Samah NH, Heard CM (2014) The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclo-oxygenase expression, ex vivo. Nanotoxicology 8(1):100–106CrossRefPubMedGoogle Scholar
  95. 95.
    Teo J, McCarroll JA, Boyer C et al (2016) A rationally optimized nanoparticle system for delivery of RNA interference therapeutics into pancreatic tumors in vivo. Biomacromolecules 17(7):2337–2351CrossRefPubMedGoogle Scholar
  96. 96.
    Nash MA, Gaub HE (2012) Single molecule adhesion of a stimuli-responsive oligo (ethylene glycol) copolymer to gold. ACS Nano 6(12):10735–10741CrossRefPubMedGoogle Scholar
  97. 97.
    Peng PC, Hsieh CM, Chen CP et al (2016) Assessment of photodynamic inactivation against periodontal bacteria mediated by a chitosan hydrogel in a 3D gingival model. Int J Mol Sci 17(11):1–13CrossRefGoogle Scholar
  98. 98.
    Lee VY, Havenstrite K, Tjio M et al (2011) Nanogel star polymer architectures: a nanoparticle platform for modular programmable macromolecular self-assembly, intercellular transport, and dual-mode cargo delivery. Adv Mater 23(39):4509–4515CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Wu W, Shen J, Banerjee P et al (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PharmaceuticsSRES’ Sanjivani College of Pharmaceutical Education and ResearchKopargaon, AhmednagarIndia

Personalised recommendations