Advertisement

Polymer Bulletin

, Volume 76, Issue 2, pp 1041–1058 | Cite as

Preparation of nanocomposites based on styrene/(p-methylstyrene) and SiO2 nanoparticles, through a metallocene–MAO initiating system

  • Paula A. ZapataEmail author
  • Paulina Zamora
  • Daniel A. Canales
  • Raúl Quijada
  • Rosario Benavente
  • Franco M. RabagliatiEmail author
Original Paper
  • 20 Downloads

Abstract

The preparation of nanocomposites, including styrene, tertbutylstyrene, and SiO2 nanoparticles, in toluene solution was attempted by in situ polymerization using a cyclopentadienyltitaniumtrichloride–methylaluminoxane, CpTiCl3–MAO, initiator system. SiO2 nanospheres (ca. 20 nm in diameter) were synthesized by the sol–gel method. The nanoparticles’ surface was modified with hexadecyltrimethoxysilane (Mod-SiO2Nps) in order to improve the interactions with the polymer. The polymerization activity increased as the proportion of p-methyl styrene was increased in the initial feed. With respect to the effect of the incorporation of nanoparticles in the reactions, the catalytic activity increased slightly in the presence of 5 wt% of nanospheres compared to neat copolymerization without any nanoparticles. Our studies achieved a convenient route through in situ polymerization, avoiding further treatment of the nanocomposite. The thermal stability of the PS increased with nanoparticle incorporation. The effect of SiO2-Npts on the catalyst’s activity and on the thermal properties of the resulting nanocomposites was determined.

Keywords

SiO2 nanospheres Nanocomposites Homo- and copolymerization Metallocene catalyst In situ copolymerization 

Notes

Acknowledgements

Financial support from DICYT Project, código 051641ZR_DAS, Vicerrectoría de Investigación, Desarrollo e Innovación, to Dr. P.A. Zapata, and from the Universidad de Santiago de Chile, and partial financial support by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) to Dr. F.M, Rabagliati under Project 108.5061, are gratefully acknowledged and financial support from MINECO Project MAT2016-79869_C2-1-P (AEI/FEDER, UE) to R. Benavente. Thanks are due to colleagues S. Muñoz-Guerra and A., Martínez de Ilarduya from Departament d’Enginyeria Química, ETSEIB, Universitat Politécnica de Catalunya, UPC, Barcelona, Spain, for performing NMR analysis of obtained polymers, P(S-co-p-MeS).

References

  1. 1.
    Schellenberg J, Tomotsu N (2002) Syndiotactic polystyrene catalysts and polymerization. Prog Polym Sci 27:1925–1982Google Scholar
  2. 2.
    Rabagliati FM, Quijada R, Cuevas MV, Terraza CA (1996) Polymerization of styrene by diphenylzinc-additive systems. Part 4: Ph2Zn–Metallocene–MAO systems. Polym Bull 37:13–19Google Scholar
  3. 3.
    Rabagliati FM, Pérez M, Cancino R, Quijada R (1999) Polymerization of styrene by diphenylzinc additive systems. Part IX. New experiments with Ph2Zn–Met–MAO systems. Polym Int 48:681–684Google Scholar
  4. 4.
    Shellenberg J (2009) Recent transition metal catalysts for syndiotactic polystyrene. Prog Polym Sci 34:688–718Google Scholar
  5. 5.
    Rabagliati FM, Pérez MA, Quijada R (1998) Polymerization of styrene by diphenylzinc-additive system. Polym Bull 41:441–446Google Scholar
  6. 6.
    Lin RH, Woo EM (2000) Melting behavior and identification of polymorphic crystals in syndiotactic polystyrene. Polymer 41:121Google Scholar
  7. 7.
    Wang C, Hsu YC, Lo CF (2001) Melting behavior and equilibrium melting temperatures of syndiotactic polystyrene in α and β crystalline forms. Polymer 42:8447Google Scholar
  8. 8.
    Rosa CD (1996) Crystal structure of the trigonal modification (α form) of syndiotactic polystyrene. Macromolecules 29:8460Google Scholar
  9. 9.
    Cartier L, Okihara T, Lotzs B (1998) The α superstructure of syndiotactic polystyrene: a frustrated structure. Macromolecules 31:3303–3310Google Scholar
  10. 10.
    Ishihara N (1995) Synthesis and properties of syndiotactic polystyrene. Macromol Symp 89:553–562Google Scholar
  11. 11.
    Xu J, Zhao Y, Wang Q, Fan Z (2005) Non-isothermal crystallization kinetics of exfoliated and intercalated polyethylene/montmorillonite nanocomposites prepared by in situ polymerization. Eur Polym J 41:3011–3017Google Scholar
  12. 12.
    Moncada E, Quijada R, Retuert J (2007) Nanoparticles prepared by the sol–gel method and their use in the formation of nanocomposites with polypropylene. Nanotechnology 18(33)Google Scholar
  13. 13.
    Jongsomjit B, Panpranot J, Praserthdam P (2007) Effect of nanoscale SiO2 and ZrO2 as the fillers on the microstructure of LLDPE nanocomposites synthesized via in situ polymerization with zirconocene. Mater Lett 61(6):1376–1379Google Scholar
  14. 14.
    Wang Q, Zhou Z, Song L, Xu H, Wang L (2004) Nanoscopic confinement effects on ethylene polymerization by intercalated silicate with metallocene catalyst. J Polym Sci Part A Polym Chem 42:38–43Google Scholar
  15. 15.
    Zapata P, Quijada R, Benavente R (2011) In situ formation of nanocomposites based on polyethylene and sílica nanospheres. J Appl Polym Sci 119(3):1771–1780Google Scholar
  16. 16.
    Benson S, Moore R (2010) Isothermal crystallization of lightly sulfonated syndiotactic polystyrene/montmorillonite clay nanocomposites. Polymer 51:5462–5472Google Scholar
  17. 17.
    Qutubuddin F (2005) Swelling behavior of organoclays in styrene and exfoliation in nanocomposites. J Colloid Interface Sci 283:373–379Google Scholar
  18. 18.
    Beraa O, Pilica B, Pavlicevica J, Jovicica M, Hollób B, Mészáros Szécsényib K, Spirkova M (2011) Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochim Acta 515:1–5Google Scholar
  19. 19.
    Song XY, Geng HP, Fang L (2006) The synthesis and characterization of polystyrene/magnetic polyhedral. Polymer 47:3049–3056Google Scholar
  20. 20.
    Rıos-Dominguez H, Ruiz-Treviño FA, Contreras-Reyes R, González-Montiel A (2006) Synthesis and evaluation of gas transport properties in polystyrene–POSS membranes. J Membr Sci 271:94–100Google Scholar
  21. 21.
    Wang G-H, Zhang L-M (2007) Reinforcement in thermal and viscoelastic properties of polystyrene by in situ incorporation of organophilic montmorillonite. Appl Clay Sci 38:17–22Google Scholar
  22. 22.
    Chasteka T, Steina A, Macoskob C (2005) Hexadecyl-functionalized lamellar mesostructured silicates and aluminosilicates designed for polymer–clay nanocomposites. Part II: dispersion in organic solvents and in polystyrene. Polymer 46:4431–4439Google Scholar
  23. 23.
    Su S, Jiang DD, Wilkie AC (2004) Novel polymerically-modified clays permit the preparation of intercalated and exfoliated nanocomposites of styrene and its copolymers by melt blending. Polym Degrad Stab 83:333–346Google Scholar
  24. 24.
    Kumar S, Rath T, Mahaling RN, Das CK (2007) Processing and characterization of carbon nanofiber/syndiotactic polystyrene composites in the absence and presence of liquid crystalline. Polym Compos Part A 38:1304–1317Google Scholar
  25. 25.
    Ma MC-C, Chen Y-J, Kuan H-C (2004) Polystyrene nanocomposite materials—preparation, mechanical, electrical and thermal properties, and morphology. J Appl Polym Sci 100:508–515Google Scholar
  26. 26.
    Rabagliati FM, Pérez MA, Soto MA, Martínez de Ilarduya A, Muñoz-Guerra S (2001) Copolymerization of styrene by diphenylzinc-additive systems, copolymerization of styrene/p-tert-butylstyrene by Ph2Zn–metallocene–MAO systems. Eur Polym J 37:1001–1006Google Scholar
  27. 27.
    Rabagliati FM, Pérez MA, Cancino RA, Soto MA, Rodríguez FJ, León AG, Ayal HA, Quijada R (2000) Polymerization of styrene bydiphenylzinc-additive systems. Part X. Homo-and copolymerization of styrene using Ph2Zn–metallocene–MAO system. Bol Soc Chil Quím 45(2):219–226Google Scholar
  28. 28.
    Palza H, Vera J, Wilhelm M, Zapata P (2011) Spherulite growth rate in polypropylene/silica nanoparticle composites: effect of particle morphology and compatibilizer. Macromol Mater Eng 296:744–751Google Scholar
  29. 29.
    Zapata PA, Palza H, Cruz LS, Lieberwirth I, Catalina F, Corrales T, Rabagliati FM (2013) Polyethylene and poly(ethylene-co-1-octadecene) composites with TiO2 based nanoparticles by metallocenic “in situ” polymerization. Polymer 54:2690–2698Google Scholar
  30. 30.
    Zapata PA, Palza H, Delgado K, Rabagliati FM (2012) Novel antimicrobial polyethylene composites prepared by metallocenic “in situ” polymerization with TiO2 based nanoparticles. J Polym Sci, Part A: Polym Chem 50:4055–4062Google Scholar
  31. 31.
    Rabagliati FM, Caro CJ, Pérez MA (2002) Copolymeriztion of styrene by diphenylzinc-additive systems. Part III. Copolymerization of styrene/para-methylstyrene using CpTiCl3–MAO and Ph2Zn–CpTiCl3–MAO initiator systems. Bol Soc Chil Quím 47:137–144Google Scholar
  32. 32.
    Rabagliati FM, Perez MA, Cancino RJ, Soto MA, Rodríguez FJ, Caro CJ (2003) Styrene copolymerization using diphenylzinc-additive initiator systems: styrene/p-substituted styrenes. Macromol Symp 192:13–23Google Scholar
  33. 33.
    Zhaolei L, Xiaoming J, Huanhuan G, Dongshan Z, Wenbing H (2014) Fast-scan chip-calorimeter measurement on the melting behaviors of melt-crystallized syndiotactic polystyrene. J Therm Anal Calorim 118:1531–1536Google Scholar
  34. 34.
    Ciardelli F, Coiali S, Passaglia E, Pucci A, Ruggeri G (2008) Nanocomposites based on polyolefins and functional thermoplastic materials. Polym Int 57:805–836Google Scholar
  35. 35.
    Wang C, Huang C-L, Chen Y-C, Hwang G-L, Tsai S-J (2008) Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites: crystallization and morphological features. Polymer 49:5564–5574Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paula A. Zapata
    • 1
    Email author
  • Paulina Zamora
    • 1
  • Daniel A. Canales
    • 1
  • Raúl Quijada
    • 2
  • Rosario Benavente
    • 3
  • Franco M. Rabagliati
    • 1
    Email author
  1. 1.Grupo de Polímeros, Departamento Ciencias del Ambiente, Facultad Química y BiologíaUniversidad Santiago de Chile, USACHSantiagoChile
  2. 2.Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y MatemáticasUniversidad de Chile and Centro para la Investigación Interdisciplinaria Avanzada en Ciencias de los Materiales (CIMAT)SantiagoChile
  3. 3.Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)MadridSpain

Personalised recommendations