Kinetic preparation and antibacterial activity of nanocrystalline poly(2-aminothiophenol)

  • E. M. S. Azzam
  • H. M. Abd El-Salam
  • R. S. Aboad
Original Paper


Poly(2-aminothiophenol) (PATH) was prepared by oxidative chemical polymerization of 2-aminothiophenol in aqueous HCl medium using ammonium persulfate as oxidant. The obtained polymer sample was characterized using different techniques. The kinetics of polymerization reaction were investigated. The data show that both initial and overall reaction rates increase with increasing monomer, oxidant and HCl concentrations. Also both initial and overall polymerization reaction rates increase with increasing temperature. The nanostructure of the prepared PATH was fabricated with silver nanoparticles. The antibacterial activity of the synthesized polymer and its nanostructure with silver nanoparticles was studied against sulfate-reducing bacteria. The synthesized polymer and its nanostructure showed good antibacterial activity.


Poly(2-aminothiophenol) (PATH) Nanostructure Oxidative polymerization Sulfate-reducing bacteria (SRB) 



Financial support by Chemistry Department, Faculty of Science, Beni-Suef University, and Egyptian Petroleum Research Institute is gratefully acknowledged.


  1. 1.
    Shinde SS, Kher JA, Kulkarni MV (2014) Synthesis, characterization and electrical property of silver doped polypyrrole nanocomposites. Int J Innov Res Sci Eng Technol 3:14021–14023CrossRefGoogle Scholar
  2. 2.
    MacDiarmid AG (2001) A novel role for organic polymers, Nobel lecture. Angew Chem Synth Metals 40:2581–2590CrossRefGoogle Scholar
  3. 3.
    Yanga CC, Gunga YJ, Shiha CC, Hungb WC, Wub KH (2011) Synthesis, infrared and microwave absorbing properties of (BaFe12O19 + BaTiO3)/polyaniline composite. J Magn Magn Mater 323:933–938CrossRefGoogle Scholar
  4. 4.
    Phanga SW, Tadokorob M, Watanabeb J (2008) Noriyuki Kuramotoa, Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles. Curr Appl Phys 8:391–394CrossRefGoogle Scholar
  5. 5.
    Stejskal J, Gilbert RG (2002) Polyaniline preparation of a conducting polymer, international union of pure and applied chemistry. Pure Appl Chem 74:857–867CrossRefGoogle Scholar
  6. 6.
    MacDiarmid AG, Yang LS, Huang WS, Humphrey BD (1987) Polyaniline: electrochemistry and application to rechargeable batteries. Synth Met 18:393–398CrossRefGoogle Scholar
  7. 7.
    Trivedi DCh, Dhawan SK (1993) Shielding of electromagnetic interference using polyaniline. Synth Met 59:267–272CrossRefGoogle Scholar
  8. 8.
    de Chanterac H, Roduit P, Belhadj-Tahar N, Fourrier-Lamer A, Djigo Y, Aeiyach S, Lacaze PC (1992) Electromagnetic absorption of polyanilines at microwave frequencies. Synth Met 52:183–192CrossRefGoogle Scholar
  9. 9.
    Halvorson C, Cao Y, Moses D, Heeger AJ (1993) Third order nonlinear optical susceptibility of polyaniline. Synth Met 57:3941–3944CrossRefGoogle Scholar
  10. 10.
    Wanga HL, MacDiarmida AG, Wangb YZ, Gebierb DD, Epsteinb AJ (1996) Application of polyaniline (emeraldine base, EB) in polymer light-emitting devices. Synth Met 78:33–37CrossRefGoogle Scholar
  11. 11.
    Dutta D, Sarma TK, Chowdhury D, Chattopadhyay A (2005) A polyaniline-containing filter paper that acts as a sensor, acid, base, and endpoint indicator and also filters acids and bases. J Colloid Interface Sci 283:153–159CrossRefPubMedGoogle Scholar
  12. 12.
    Drelinkiewicz A, Waksmundzka-Góra A, Sobczak JW, Stejskal J (2007) Hydrogenation of 2-ethyl-9,10-anthraquinone on Pd-polyaniline(SiO2) composite catalyst. The effect of humidity Applied Catalysis A: General 333:219–228CrossRefGoogle Scholar
  13. 13.
    Wang C, Wang Z, Li M, Li H (2001) Well-aligned polyaniline nano-fibril array membrane and its field emission property. Chem Phys Lett 341:431–434CrossRefGoogle Scholar
  14. 14.
    Alam MM, Wang J, Guo Y, Lee SP, Tseng H-R (2005) Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J Phys Chem B 109:12777–12784CrossRefPubMedGoogle Scholar
  15. 15.
    Rivera R, Pinto NJ (2009) Schottky diodes based on electrospun polyaniline nanofibers: effects of varying fiber diameter and doping level on device performance. Physica E 41:423–426CrossRefGoogle Scholar
  16. 16.
    McCall RP, Ginder JM, Leng JM, Coplin KA, Ye HJ, Epstein AJ, Asturias GE, Manohar SK, Masters JG, Scherr EM, MacDiarmid AG (1991) Photoinduced absorption and erasable optical information storage in polyanilines. Synth Met 1329:41–43Google Scholar
  17. 17.
    Tseng RJ, Huang J, Ouyang J, Kaner RB, Yang Y (2005) Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett 5:1077–1080CrossRefPubMedGoogle Scholar
  18. 18.
    Huang J, Kaner RB (2004) Flash welding of conducting polymer nanofibers. Nat Mater 3:783–786CrossRefPubMedGoogle Scholar
  19. 19.
    Blinova NV, Stejskal J, Trchová M, Ćirić-Marjanović G, Sapurina I (2007) Polymerization of aniline on polyaniline membranes. J Phys Chem B 111:2440–2448CrossRefPubMedGoogle Scholar
  20. 20.
    Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14CrossRefGoogle Scholar
  21. 21.
    Bessiere A, Duhamel C, Badot JC, Lucas V, Certiat MC (2004) Study and optimization of a flexible electrochromic device based on polyaniline. Electrochim Acta 49:2051–2055CrossRefGoogle Scholar
  22. 22.
    Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) Artificial muscle: electromechanical actuators using polyaniline films. Synth Met 71:2211–2212CrossRefGoogle Scholar
  23. 23.
    Yin J, Zhao X, Xia X, Xiang L, Qiao Y (2008) Electrorheological fluids based on nano-fibrous polyaniline. Polymer 49:4413–4419CrossRefGoogle Scholar
  24. 24.
    Soto-Oviedo MA, Araujo OA, Faez R, Rezende MC, De Paoli MA (2006) Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synth Met 156:1249–1255CrossRefGoogle Scholar
  25. 25.
    Kalendova A, Vesely D, Stejskal J (2008) Organic coatings containing polyaniline and inorganic pigments as corrosion inhibitors. Prog Org Coat 62:105–116CrossRefGoogle Scholar
  26. 26.
    Prakash GKS, Suresh P, Viva F, Olah GA (2008) Novel single step electrochemical route to γ-MnO2 nanoparticle-coated polyaniline nanofibers: thermal stability and formic acid oxidation on the resulting nanocomposites. J Power Sources 181:79–84CrossRefGoogle Scholar
  27. 27.
    Chang MY, Wu CS, Chen YF, Hsieh BZ, Huang WY, Ho KS, Hsieh TH, Han YK (2008) Polymer solar cells incorporating one-dimensional polyaniline nanotubes. Org Electron 9:1136–1139CrossRefGoogle Scholar
  28. 28.
    Sayyah SM, Abd El-Khalek AA, Bahgat AA, Abd El-Salam HM (2001) Kinetic study, characterization and theoretical studies of oxidative chemical polymerization of para-aminophenol in acid medium using K2Cr2O7 as oxidizing agent. Int J Polym Mater 49:25–49CrossRefGoogle Scholar
  29. 29.
    Sayyah SM, Bahgat AA, Abd El-Salam HM (2001) Kinetic studies of the chemical polymerization of substituted aniline in aqueous solutions and characterization of the polymer obtained Part 1. 3-Chloroaniline. Polym Int. 50:197–206CrossRefGoogle Scholar
  30. 30.
    Sayyah SM, Abd El-Salam HM (2003) Aqueous oxidative polymerization of N-methylaniline in acid medium and characterization of the obtained polymer. Int J Polym Mater 52:1087–1111CrossRefGoogle Scholar
  31. 31.
    Sayyah SM, Bahgat AA, Abd El-Salam HM (2002) Kinetic studies of the aqueous oxidative polymerization of 3-hydroxyaniline and characterization of the polymer obtained. Int J Polym Mater 51:291–314CrossRefGoogle Scholar
  32. 32.
    Sayyah SM, Abd El-Salam HM, Bahgat AA (2002) Aqueous oxidative polymerization of 3-methoxyaniline and characterization of its polymer. Int J Polym Mater 51:915–938CrossRefGoogle Scholar
  33. 33.
    Sayyah SM, Abd El-Salam HM, Azzam EMS (2005) Surface activity of monomeric and polymeric (3-alkyloxyaniline) surfactants. Int J Polym Mater 54:541–555CrossRefGoogle Scholar
  34. 34.
    Sayyah SM, Abd El-Salam HM, Azzam EMS (2006) Oxidative chemical polymerization of some 3-alkyloxyaniline surfactants and characterization of the obtained polymers. Int J Polym Mater 55:1075–1093CrossRefGoogle Scholar
  35. 35.
    Sato M, Tanka S, Kacriyama K (1986) Soluble conducting polythiophenes. J Chem Soc Chem Commun 11:873–874CrossRefGoogle Scholar
  36. 36.
    Gagnon D, Capistran J, Karasz F, Lenz R (1984) Conductivity anisotropy in oriented poly(p-Phenylene vinylene). Polym Bull 12:293–298CrossRefGoogle Scholar
  37. 37.
    Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, MacDiarmid AG, Park YW, Shirakawa H (1978) Synthesis of highly conducting films of derivatives of polyacetylene. J Am Chem Soc 100:1013–1015CrossRefGoogle Scholar
  38. 38.
    Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875Google Scholar
  39. 39.
    Rahman M, Kumar A, Su-Park D, Shim Y (2008) Electrochemical sensors based on organic conjugated polymers. Sensors (Basel). 8:118–141CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sedghi R, Shojaipour M, Behbahani M, Nabid MR (2015) Application of magnetic nanoparticles modified with poly(2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper and silver ions in food matrices. RSC Adv 5:67418–67426CrossRefGoogle Scholar
  41. 41.
    Nabid MR, Sedghi R, Bagheri A, Behbahani M, Taghizadeh M, Abdi Oskooie H, Heravi MM (2012) Preparation and application of poly(2-amino thiophenol)/MWCNTs nanocomposite for adsorption and separation of cadmium and lead ions via solid phase extraction. J Hazard Mater 203:93–100CrossRefPubMedGoogle Scholar
  42. 42.
    Michaelson JC, McEvoy AJ, Kuramoto N (1992) Morphology and growth rate of polyaniline films modified by surfactants and polyelectrolytes. React Polym 17:197–206CrossRefGoogle Scholar
  43. 43.
    Azzam EMS, Sami RM, Kandile NG (2012) Activity inhibition of sulfate reducing bacteria using some cationic thiol surfactants and their nanostructures. Am J Biochem 2:29–35CrossRefGoogle Scholar
  44. 44.
    Azzam EMS, Zaki MF (2016) Surface and antibacterial activity of synthesized nonionic surfactant assembled on metal nanoparticles. Egypt J Pet (EGYJP) 25:153–159CrossRefGoogle Scholar
  45. 45.
    Hefni HHH, Azzam EM, Badr EA, Hussein M, Tawfik SM (2016) Synthesis, characterization and anticorrosion potentials of chitosan-g-PEG assembled on silver nanoparticles. Int J Biolog Macromol 83:297–305CrossRefGoogle Scholar
  46. 46.
    Azzam EMS, Eshaq Gh, Rabie AM, Bakr AA, Abd-Elaal AA, El Metwally AE, Tawfik SM (2016) Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu (II) from aqueous solution. Int J Biolog Macromol 89:507–517CrossRefGoogle Scholar
  47. 47.
    Abd El-Salam HM, Askalany HG (2016) Synthesis and characterization of crystalline poly(N-(2-hydroxyethyl) aniline) microspheres. High performance polymers, 1–10, Reprints and permission: Permissions.
  48. 48.
    Azzam EMS, Kandile NG, Badawi AM, Sami RM (2011) Influence in the surface activity for some cationic thiol surfactants using their nanostructures. JDST 32:1325–1331Google Scholar
  49. 49.
    Gupta K, Jana PC, Meikap AK (2010) Optical and electrical transport properties of polyaniline-silver nanocomposite. Synth Met 160:1566–1573CrossRefGoogle Scholar
  50. 50.
    Aiad I, El-Sukkary MM, Soliman EA, El-Awady Moshira Y, Shaban SM (2014) In situ and green synthesis of silver nanoparticles and their biological activity. J Indust Eng Chem 20:3430–3439CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • E. M. S. Azzam
    • 1
  • H. M. Abd El-Salam
    • 2
  • R. S. Aboad
    • 2
  1. 1.Applied Surfactants Laboratory, Petrochemicals DepartmentEgyptian Petroleum Research InstituteNasr CityEgypt
  2. 2.Department of Chemistry, Faculty of Science, Polymer Research LaboratoryBeni-Suef UniversityBeni-Suef CityEgypt

Personalised recommendations