Effect of graphene oxide with different exfoliation levels on the mechanical properties of epoxy nanocomposites

  • Liwei Yan
  • Ya Zhou
  • Xueqin Zhang
  • Huawei ZouEmail author
  • Yang ChenEmail author
  • Mei Liang
Original Paper


The surface of graphene oxide (GO) was covalently modified by two kinds of monofunctional poly(oxypropylene)amines with different molecular chain lengths. Thermogravimetric analysis and other relevant analysis confirmed that both monoamine molecules were successfully grafted onto GO nanosheets. The monoamine molecules with longer molecular chain functionalized GO showed better compatibility and higher degree of exfoliation in the epoxy matrix, achieving better enhancement of both strength and elongation at break. The tensile strength, elongation at break, flexural strength and dielectric constant of the epoxy nanocomposite exhibit 29, 77.9, 28.5 and 6000% (0.1 Hz) increase at 0.05 wt% loading fraction when compared with unmodified counterparts, respectively. Our results demonstrate a great potential for industrial applications.


Graphene oxide Exfoliation Epoxy nanocomposites Mechanical properties 



We are grateful for financial support by National Natural Science Foundation of China (51273118) and the Science & Technology Pillar Program of Sichuan (2013FZ0006), and the Analytical and Testing Center of Sichuan University for providing FTIR, AFM, Raman, TGA, SEM and DMA measurement.


  1. 1.
    Motahari A, Omrani A, Rostami AA, Ehsani M (2013) Preparation and characterization of a novel epoxy based nanocomposite using tryptophan as an eco-friendly curing agent. Thermochim Acta 574:38–46CrossRefGoogle Scholar
  2. 2.
    Das G, Karak N (2010) Thermostable and flame retardant Mesua ferrea L. seed oil based non-halogenated epoxy resin/clay nanocomposites. Prog Organ Coat 69(4):495–503CrossRefGoogle Scholar
  3. 3.
    Sudhakara P, Kannan P, Obireddy K, Rajulu AV (2011) Organophosphorus and DGEBA resins containing clay nanocomposites: flame retardant, thermal, and mechanical properties. J Mater Sci 46(8):2778–2788CrossRefGoogle Scholar
  4. 4.
    Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22CrossRefGoogle Scholar
  5. 5.
    Park YT, Qian Y, Chan C, Suh T, Nejhad MG, Macosko CW, Stein A (2015) Epoxy toughening with low graphene loading. Adv Funct Mater 25(4):575–585CrossRefGoogle Scholar
  6. 6.
    Zaman I, Phan TT, Kuan H-C, Meng Q, La Bao L, Luong L, Youssf O, Ma J (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52(7):1603–1611CrossRefGoogle Scholar
  7. 7.
    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21(35):13290CrossRefGoogle Scholar
  8. 8.
    Li Z, Young RJ, Wang R, Yang F, Hao L, Jiao W, Liu W (2013) The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer 54(21):5821–5829CrossRefGoogle Scholar
  9. 9.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRefGoogle Scholar
  10. 10.
    Zaman I, Kuan H-C, Meng Q, Michelmore A, Kawashima N, Pitt T, Zhang L, Gouda S, Luong L, Ma J (2012) A facile approach to chemically modified graphene and its polymer nanocomposites. Adv Funct Mater 22(13):2735–2743CrossRefGoogle Scholar
  11. 11.
    Zhang M, Li Y, Su Z, Wei G (2015) Recent advances in the synthesis and applications of graphene–polymer nanocomposites. Polym Chem 6(34):6107–6124CrossRefGoogle Scholar
  12. 12.
    Xu X, Li P, Zhang L, Liu X, Zhang HL, Shi Q, He B, Zhang W, Qu Z, Liu P (2017) Covalent functionalization of graphene by nucleophilic addition reaction: synthesis and optical-limiting properties. Chem Asian J 12(19):2583–2590CrossRefGoogle Scholar
  13. 13.
    Li Y, Zhang H, Porwal H, Huang Z, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in situ exfoliated graphene/epoxy nanocomposites. Compos Part A Appl Sci Manuf 95:229–236CrossRefGoogle Scholar
  14. 14.
    Wang X, Xing W, Zhang P, Song L, Yang H, Hu Y (2012) Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos Sci Technol 72(6):737–743CrossRefGoogle Scholar
  15. 15.
    Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850–856CrossRefGoogle Scholar
  16. 16.
    Mural PKS, Sharma M, Madras G, Bose S (2015) A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites. RSC Adv 5(41):32078–32087CrossRefGoogle Scholar
  17. 17.
    Yang H, Shan C, Li F, Zhang Q, Han D, Niu L (2009) Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J Mater Chem 19(46):8856–8860CrossRefGoogle Scholar
  18. 18.
    Zeng C, Lu S, Xiao X, Gao J, Pan L, He Z, Yu J (2015) Enhanced thermal and mechanical properties of epoxy composites by mixing noncovalently functionalized graphene sheets. Polym Bull 72(3):453–472CrossRefGoogle Scholar
  19. 19.
    Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y (2009) A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater 21(12):1275–1279CrossRefGoogle Scholar
  20. 20.
    Shim SH, Kim KT, Lee JU, Jo WH (2012) Facile method to functionalize graphene oxide and its application to poly (ethylene terephthalate)/graphene composite. ACS Appl Mater Interfaces 4(8):4184–4191CrossRefGoogle Scholar
  21. 21.
    Mallakpour S, Abdolmaleki A, Borandeh S (2014) Covalently functionalized graphene sheets with biocompatible natural amino acids. Appl Surf Sci 307:533–542CrossRefGoogle Scholar
  22. 22.
    Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos Part A Appl Sci Manuf 64:79–89CrossRefGoogle Scholar
  23. 23.
    Cao Y, Lai Z, Feng J, Wu P (2011) Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers. J Mater Chem 21(25):9271–9278CrossRefGoogle Scholar
  24. 24.
    Kang W-S, Rhee KY, Park S-J (2017) Influence of surface energetics of graphene oxide on fracture toughness of epoxy nanocomposites. Compos Part B Eng 114:175–183CrossRefGoogle Scholar
  25. 25.
    Song L, Lu S, Xiao X, Qi B, He Z, Xu X, Rao B, Yu J (2017) Enhanced thermal and mechanical properties of liquid crystalline-grafted graphene oxide-filled epoxy composites. Polym Bull 74(5):1611–1627CrossRefGoogle Scholar
  26. 26.
    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21(35):13290–13298CrossRefGoogle Scholar
  27. 27.
    Wan Y-J, Tang L-C, Gong L-X, Yan D, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480CrossRefGoogle Scholar
  28. 28.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRefGoogle Scholar
  29. 29.
    Ma H-L, Zhang H-B, Hu Q-H, Li W-J, Jiang Z-G, Yu Z-Z, Dasari A (2012) Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites. ACS Appl Mater Interfaces 4(4):1948–1953CrossRefGoogle Scholar
  30. 30.
    Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRefGoogle Scholar
  31. 31.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240CrossRefGoogle Scholar
  32. 32.
    Paredes J, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascon J (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25(10):5957–5968CrossRefGoogle Scholar
  33. 33.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924CrossRefGoogle Scholar
  34. 34.
    Shen J, Hu Y, Li C, Qin C, Ye M (2009) Synthesis of amphiphilic graphene nanoplatelets. Small 5(1):82–85CrossRefGoogle Scholar
  35. 35.
    Liao W-H, Yang S-Y, Wang J-Y, Tien H-W, Hsiao S-T, Wang Y-S, Li S-M, Ma C-CM, Wu Y-F (2013) Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ polymerization. ACS Appl Mater Interfaces 5(3):869–877CrossRefGoogle Scholar
  36. 36.
    Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20(10):1982–1992CrossRefGoogle Scholar
  37. 37.
    Lomeda JR, Doyle CD, Kosynkin DV, Hwang W-F, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130(48):16201–16206CrossRefGoogle Scholar
  38. 38.
    Gong L, Young RJ, Kinloch IA, Riaz I, Jalil R, Novoselov KS (2012) Optimizing the reinforcement of polymer-based nanocomposites by graphene. ACS Nano 6(3):2086–2095CrossRefGoogle Scholar
  39. 39.
    Gudarzi MM, Aboutalebi SH, Sharif F (2016) Graphene oxide‐based composite materials. In: Graphene oxide: fundamentals and applications, vol 314Google Scholar
  40. 40.
    Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Lab of Polymer Materials EngineeringPolymer Research Institute of Sichuan UniversityChengduChina

Personalised recommendations