The effect of addition of low-layer graphene nanoparticles on structure and mechanical properties of polyurethane-based block copolymers

  • Marina GorbunovaEmail author
  • Viktoria Komratova
  • Alexander Grishchuk
  • Elmira Badamshina
  • Denis Anokhin
Original Paper


The effect of low-layer graphene nanoparticles (LLGNP) at concentration from 0.002 to 0.1 wt.% on physical–mechanical and structural parameters of multi-block polyurethanes based on oligodiethyleneglycol adipinate, 2,4-toluylene diisocyanate and 1,6-hexamethylene diisocyanate mixture and bifunctional chain elongation agents, 2-aminoethanol and 1,4-butanediol has been studied. Three methods for LLGNP addition in polymer were compared: (1) in a reaction mixture at the polymer synthesis on a macrodiisocyantate formation step (in situ 1 method); (2) in the polymer solution at a final reaction step (in situ 2 method); and (3) in polymer melt (ex situ). It has been shown that using of the in situ 2 method provides an increase in Young’s modulus of the nanocomposites. For ex situ method, a significant increase in tensile strength of the material with growth of LLGNP concentration was detected.


Polyurethane Low-layer graphene nanoparticles Mechanical properties Small-angle X-ray scattering experiments 



The authors acknowledge the Ministry of Science and High Education of the Russian Federation for financial support (contract No. 14.578.21.0190 (RFMEFI57816X0190)). The work was done on the theme of the state task, № 01201361836. The authors thank for the measurements in the Center for Collective Use ICPC RAS E.E. Al’yanova (DSC), V.A. Lesnichaya (Physical–mechanical), E.O. Perepelithsina (Chromatography) and N.N. Dremova (SEM).


  1. 1.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204. CrossRefGoogle Scholar
  2. 2.
    Badamshina ER, Gafurova MP (2012) Polymeric nanocomposites containing non covalently bonded fullerene C60: properties and applications. J Mater Chem A 22:9427–9438. CrossRefGoogle Scholar
  3. 3.
    Badamshina ER, Gafurova MP, YaI Estrin (2010) Modification of carbon nanotubes and synthesis of polymeric composites involving the nanotubes. Russ Chem Rev 79:945–979. CrossRefGoogle Scholar
  4. 4.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Dubonoson SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. CrossRefGoogle Scholar
  5. 5.
    Morozov SV, Novoselov KS, Geim AK (2008) Electron transport in graphene. Phys Usp 51:744–748. CrossRefGoogle Scholar
  6. 6.
    Chen S, Sun Z, Feng L (2016) Strain engineering of graphene: a review. Nanoscale 8:3207–3217. CrossRefGoogle Scholar
  7. 7.
    Torres T (2017) Graphene chemistry. Chem Soc Rev 46:4385–4386. CrossRefGoogle Scholar
  8. 8.
    Eletskii AV, Iskandarova IM, Knizhnik AA, Krasikov DN (2011) Graphene: fabrication methods and thermophysical properties. Phys Usp 54:227–258. CrossRefGoogle Scholar
  9. 9.
    Badamshina ER, YaI Estrin, Gafurova MP (2013) Nanocomposites based on polyurethanes and carbon nanoparticles: preparation, properties and application. J Mater Chem A 1:6509–6529. CrossRefGoogle Scholar
  10. 10.
    Wu T, Biqiong CB (2017) Facile fabrication of porous conductive thermoplastic polyurethane nanocomposite films via solution casting. Sci Rep 1:17470–17488. CrossRefGoogle Scholar
  11. 11.
    Martinez-Rubi Y, Ashrafi B, Jakubinek MB, Zou S, Laqua K, Barnes M, Simard B (2017) Fabrication of high content carbon nanotube-polyurethane sheets with tailorable properties. Appl Mater Interfaces 9:30840–30849. CrossRefGoogle Scholar
  12. 12.
    Strankowski M, Korzeniewski P, Strankowska J, Anu AS, Sabu T (2018) Morphology, mechanical and thermal properties of thermoplastic polyurethane containing reduced graphene oxide and graphene nanoplatelets. Mater 11:82–94. CrossRefGoogle Scholar
  13. 13.
    Urban M, Strankowski M (2017) Shape memory polyurethane materials vontaining ferromagnetic iron oxide and graphene nanoplatelets. Mater 10:1083–1106. CrossRefGoogle Scholar
  14. 14.
    Hosseini SA, Mortazavi S, Nia JI (2018) Preparation and characterisation of hydroxyl-terminated polybutadiene-based polyurethane/graphene nanocomposites. Plast Rubber Compos 47:241–248. CrossRefGoogle Scholar
  15. 15.
    Tayfun U, Kanbur Y, Abaci U, Guney HY, Bayramli E (2015) Mechanical, Flow and electrical properties of thermoplastic polyurethane/fullerene composites: effect of surface modification of fullerene. Compos B 80:101–107. CrossRefGoogle Scholar
  16. 16.
    Appel AK, Ralf T, Rolf M (2012) Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 53:4931–4939. CrossRefGoogle Scholar
  17. 17.
    Khan U, May P, O’Neill A, Coleman JN (2010) Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 48:4035–4041. CrossRefGoogle Scholar
  18. 18.
    Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58:412–417. CrossRefGoogle Scholar
  19. 19.
    Yoon S, Park J, Kim E, Kim B (2011) Preparations and properties of waterborne polyurethane/allyl isocyanated-modified graphene oxide nanocomposites. Colloid Polym Sci 289:1809–1814. CrossRefGoogle Scholar
  20. 20.
    Choi J, Kim D, Ryu K, Lee HI, Jeong H, Shin C, Kim J, Kim B (2011) Functionalized graphene sheet/polyurethane nanocomposites: effect of particle size on physical properties. Macromol Res 19:809–814. CrossRefGoogle Scholar
  21. 21.
    Cai D, Yusoh K, Song M (2010) The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnol 20:085712–085716. CrossRefGoogle Scholar
  22. 22.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450. CrossRefGoogle Scholar
  23. 23.
    Cai D, Jin J, Yusoh K, Rafiq R, Song M (2012) High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos Sci Technol 72:702–707. CrossRefGoogle Scholar
  24. 24.
    Wang X, Hu Y, Song L, Yang H, Xinga W, Lu H (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21:4222–4227. CrossRefGoogle Scholar
  25. 25.
    Evingür GA, Pekcan Ö (2018) Mechanical properties of graphene oxide–polyacrylamide composites before and after swelling in water. Polym Bull 75:1431–1439. CrossRefGoogle Scholar
  26. 26.
    Martin-Gallego M, Verdejo R, Lopez-Manchado MA, Sangermano M (2011) Epoxy-graphene UV-cured nanocomposites. Polymer 52:4664–4669. CrossRefGoogle Scholar
  27. 27.
    Yavari F, Rafiee MA, Rafiee J, Yu ZZ, Koratkar N (2010) Dramatic increase in fatigue life in hierarchical graphene composites. Appl Mater Interfaces 2:2738–2743. CrossRefGoogle Scholar
  28. 28.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375. CrossRefGoogle Scholar
  29. 29.
    Maron GK, Noremberg BS, Alano JH, Pereira FR, Deon VG, Santos RCR, Freire VN, Valentini Carreno NLV (2018) Carbon fiber/epoxy composites: effect of zinc sulphide coated carbon nanotube on thermal and mechanical properties. Polym Bull 75:1619–1633. CrossRefGoogle Scholar
  30. 30.
    Abidin ASZ, Yusoh K, Jamari SS, Abdullah AH, Ismail Z (2018) Surface functionalization of graphene oxide with octadecylamine for improved thermal and mechanical properties in polybutylene succinate nanocomposite. Polym Bull 75:3499–3522. CrossRefGoogle Scholar
  31. 31.
    Koval′chuk AA, Shegolokhin AN, Shevchenko VG, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Synthesis and properties of polypropylene/multiwall carbon nanotube composites. Macromolecules 41:3149–3156. CrossRefGoogle Scholar
  32. 32.
    Menes O, Cano M, Benedito A, Giménez E, Castell P, Maser WK, Benito AM (2012) The effect of ultra-thin graphite on the morphology and physical properties of thermoplastic polyurethane elastomer composites. Compos Sci Technol 72:1595–1601. CrossRefGoogle Scholar
  33. 33.
    Quan H, Zhang BQ, Zhao Q, Yuen RKK, Li RKY (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos A 40:1506–1513. CrossRefGoogle Scholar
  34. 34.
    Estrin YI, Badamshina ER, Grishuk AA, Kulagina GS, Lesnichaya VA, Ol’khov YA, Ryabenko AG, Sul’yanov SN (2012) Properties of nanocomposites based on crosslinked elastomeric polyurethane and ultrasmall additives of single-wall carbon nanotubes. Polym Sci A 54:290–298. CrossRefGoogle Scholar
  35. 35.
    Cho JW, Jung YC, Chung YC, Chun BC (2004) Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J Appl Polym Sci 93:2410–2415. CrossRefGoogle Scholar
  36. 36.
    Gafurova MP, Lodygina VP, Grigor’yeva VA, Chernyi GI, Komratova VV, Baturin SM (1982) Kinetics of interaction of m-chlorophenyl isocyanate with a hydroxyl-terminated oligo butadienes. Polym Sci USSR 24:964–970. CrossRefGoogle Scholar
  37. 37.
    Weissberger A, Proskauer E, Riddick J, Toops E (1955) Organic solvents. Physical properties and methods of purification. Wiley, New York, p 254Google Scholar
  38. 38.
    Shulga YM, Baskakov SA, Knerelman EI, Davidova GI, Badamshina ER, Shulga NYu, Skryleva EA, Agapov AL, Voylov DN, Sokolov AP, Martynenko VM (2014) Carbon nanomaterial produced by microwave exfoliation of graphite oxide: new insights. RSC Adv 4:587–592. CrossRefGoogle Scholar
  39. 39.
    Anokhin DV, Gorbunova MA, YaI Estrin, Komratovaa VV, Badamshinaa ER (2016) The role of fast and slow processes in the formation of structure and properties of thermoplastic polyurethanes. Phys Chem Chen Phys 18:31769–31776. CrossRefGoogle Scholar
  40. 40.
    Kobelev V (2014) Relaxation and creep in twist and flexure. MMMS 10:304–323. Google Scholar
  41. 41.
    Reif SK, Amberge KJ, Woodford DA (1995) Creep design analysis for a thermoplastic from stress relaxation measurements. Mater Des 16:15–21. CrossRefGoogle Scholar
  42. 42.
    Ehrburger-Dolle F, Morfin I, Bley F, Livet F, Heinrich G, Piché L, Sutton M (2012) Tensile stress relaxation and recovery behavior of a cross-linked EPDM rubber matrix loaded with different fillers. Macromolecules. Google Scholar
  43. 43.
    Xia H, Song M, Zhang Z, Richardson M (2007) Microphase separation, stress relaxation and creep behavior of polyurethane nanocomposites. J Appl Polym Sci 103:2992–3002. CrossRefGoogle Scholar
  44. 44.
    Lin M-F, Wang H-H, Shiao K-R (1995) Mechanical behaviour of block copolymers of polyurethane with poly (4,4′-diphenylsulphone terephthalamide). J Mater Sci 30:1302–1306. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP)ChernogolovkaRussia
  2. 2.Moscow Institute of Physics and Technology (MIPT)Institutskiy per. 9, Moscow Region, DolgoprudnyRussia

Personalised recommendations