Advertisement

Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes

  • K. Sundaramahalingam
  • M. MuthuvinayagamEmail author
  • N. Nallamuthu
  • D. Vanitha
  • M. Vahini
Original Paper
  • 66 Downloads

Abstract

Lithium ion conducting solid polymer blend electrolytes (SPBE) are prepared using the host polymers poly[vinylalcohol] (PVA), poly[vinyl pyrrolidone] (PVP) and the lithium acetate. The complexation between the polymers and salt is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The glass transition temperature of the prepared polymer electrolytes is determined by differential scanning calorimeter. Surface morphology of the polymer electrolytes is identified by scanning electron microscopy. Ionic conductivity of the solid electrolytes is studied using impedance analyzer in the frequency range of 42 Hz–1 MHz. The higher electrical conductivity of 5.79 × 10−6 S cm−1 and 1.400 × 10−4 S cm−1 is determined for 50PVA:50PVP:25 wt% lithium acetate system at 303 K and 363 K temperature, respectively. The dielectric and loss tangent analysis is also carried out for prepared polymer electrolyte and the higher-conductivity sample at different temperatures. The transference numbers of polymer electrolytes are calculated by Wagner’s polarizing technique and also confirmed by Bruce–Vincent technique.

Keywords

PVA/PVP XRD DSC Ionic conductivity Transference number 

Notes

Acknowledgements

The authors thank the management of Kalasalingam Academy of Research and Education for Providing facilities and fellowships to carry out the research.

References

  1. 1.
    Hadi AG, Lafta F, Hashim A, Hakim H, Al-Zuheiry AIO, Salman SR, Ahmed H (2013) Study the effect of barium sulphate on optical properties of polyvinyl alcohol (PVA). Univers J Mater Sci 1:52–55Google Scholar
  2. 2.
    Hassan MA, Gouda ME, Sheha E (2010) Investigations on the electrical and structural properties of PVA doped with (NH4)2SO4. J Appl Polym Sci 116:1213–1217Google Scholar
  3. 3.
    De-Queiroz AAA, Soares DAW, Trzesniak P, Gustavo A (2001) Abraham resistive-type humidity sensors based on PVP-Co and PVP-I2 complexes. J Polym Sci 39:459–469CrossRefGoogle Scholar
  4. 4.
    Gouda ME, Badr SK, Hassan MA, Sheha E (2011) Impact of ethylene carbonate on electrical properties of PVA/(NH4)2SO4/H2SO4 proton-conductive membrane. Ionics 17:255–261CrossRefGoogle Scholar
  5. 5.
    El-Khodary A (2010) Evolution of the optical, magnetic and morphological properties of PVA films filled with CuSO4. Phys B 405:3401–3408CrossRefGoogle Scholar
  6. 6.
    Sharaf F, Mansour SA, El-Lawindy AMY (1999) Mechanical and relaxation properties of γ-irradiated PVA doped with ferrous sulphate. Polym Degrad Stab 66:173–177CrossRefGoogle Scholar
  7. 7.
    Basha AF, Basha MAF (2012) Structural and thermal degradation studies on thin films of the nanocomposite system PVP-Ce(SO4)2·4H2O. Polym Bull 68:151–165CrossRefGoogle Scholar
  8. 8.
    Uma T, Mahalingam T, Stimming U (2004) Conductivity and thermal studies of solid polymer electrolytes prepared by blending polyvinylchloride, polymethylmethacrylate and lithium sulfate. Mater Chem Phys 85:131–136CrossRefGoogle Scholar
  9. 9.
    Sandu T, Sarbu A, Damian CM, Patroi D, Iordache TV, Budinova T, Tsyntsarski B, FerhatYardim M, Sirkecioglu A (2015) Functionalized bicomponent polymer membranes as supports for covalent immobilization of enzymes. React Funct Polym 96:5–13CrossRefGoogle Scholar
  10. 10.
    Caprarescu S, Miron AR, Purcar V, Radu AL, Sarbu A, Nicolae CA, (Neagu) Pascu M, Ion-Ebrasu D, Raditoiu V (2018) Treatment of Crystal violet from synthetic solution using membranes doped with natural fruit extract. CLEAN—Soil, Air, Water 46. Article number 1700413Google Scholar
  11. 11.
    Caprarescu S, Miron AR, Purcar V, Radu AL, Sarbu A, Ion-Ebrasu D, Atanase LI, Ghiurea M (2016) Efficient removal of Indigo Carmine dye by a separation process. Water Sci Technol 74:2462–2473CrossRefGoogle Scholar
  12. 12.
    Ebrasu D, Stamatin I, Vaseashta A (2008) Proton-conducting polymers as electrolyte for fuel cells. NANO 3:381–386CrossRefGoogle Scholar
  13. 13.
    Caprarescu S, Miron AR, Purcar V, Radu AL, Sarbu A, Ianchis R, Ion Erbasu D (2017) Commercial gooseberry buds extract containing membrane for removal of methylene blue dye from synthetic wastewaters. Rev Chim (Bucharest) 68:1757–1762Google Scholar
  14. 14.
    Yahya MZA, Arof AK (2003) Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes. Eur Polymer J 39:897–902CrossRefGoogle Scholar
  15. 15.
    Ismail L, Majid SR, Arof AK (2013) Conductivity study in PEO–LiOAc based polymer electrolyte. Mater Res Innov 13:282–284CrossRefGoogle Scholar
  16. 16.
    Abdelrazek EM, Elashmawi IS, El-KhodaryA YassinA (2010) Structural optical thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr Appl Phys 10:607–613CrossRefGoogle Scholar
  17. 17.
    Su J, Ma ZY, Scheinbeim JI, Newman BA (1995) Ferroelectric and piezoelectric properties ofnylon 11/poly (vinylidene fluoride) bilaminate films. J Polym Sci Polym Phys 33:85–91CrossRefGoogle Scholar
  18. 18.
    Tawansi A, Zidan HM (1990) Magnetic effects of the interfacial solitons in polystyrene composites. J Phys D Appl Phys 23:1320CrossRefGoogle Scholar
  19. 19.
    KimSJ Park SJ, KimIY Lee YH, Kim SI (2002) Thermal characteristics of poly (VinylAlcohol) and poly (Vinylpyrrolidone) IPNs. J Appl Polym Sci 86:1844–1847CrossRefGoogle Scholar
  20. 20.
    Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA–PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103:125–133CrossRefGoogle Scholar
  21. 21.
    Qiao J, Fu J, Lin R, Ma J, Liu J (2010) Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. J Polymer 51:4850–4859CrossRefGoogle Scholar
  22. 22.
    Tripathi Mridula, Trivedi Shivangi, Dhar Ravindra, Singh Markandey, Pandey ND, Agrawal SL (2011) Structural and thermal studies of [PVA-LiAc]: TiO2 polymer nanocomposite system. Phase Trans 84:972–980CrossRefGoogle Scholar
  23. 23.
    Wen Z, Itoh T, Ichikawa Y, Kubo M, Yamamoto O (2000) Blend-based polymer electrolytes of poly (ethylene oxide) and hyper branched poly [bis(triethylene glycol)benzoate] with terminalacetyl groups. Solid State Ion 134:281–289CrossRefGoogle Scholar
  24. 24.
    Bhajantri RF, Ravindrachary V, Poojary B, Ismayil Harisha A, Crasta V (2009) Studies on fluorescent PVA + PVP + MPDMAPP composite films. Polym Eng Sci 49:903–909CrossRefGoogle Scholar
  25. 25.
    Basha MAF (2010) Magnetic and optical studies on polyvinylpyrrolidone thin films doped with rare earth metal salts. Polym J 42:728–734CrossRefGoogle Scholar
  26. 26.
    Jaipal Reddy M, SreepathiRao S, Laxminarsaiah E, SubbaRao UV (1995) study of a thin film electrochemical cell based on (PVP + AgNO3) electrolyte. Solid State Ion 80:93–98CrossRefGoogle Scholar
  27. 27.
    Jaipal Reddy M, Sreekanth T, Chandrashekar M, Subbarao UV (2000) Ion transport and electrochemical cell characteristic studies of a new (PVP + NaNO3) polymer electrolyte system. J Mater Sci 35:2841CrossRefGoogle Scholar
  28. 28.
    Armand M (1983) Polymer solid electrolytes—an overview. Solid State Ionics 9–10:745–754CrossRefGoogle Scholar
  29. 29.
    Zidan HM, Tawansi A, Abu-Elnader M (2003) Miscibility, optical and dielectric properties of UV-irradiated poly(vinylacetate)/poly(methylmethacrylate) blends. Phys B 339:78–86CrossRefGoogle Scholar
  30. 30.
    SudhaKamath MK, Harish kumar HG, Chandramani R, Radhakrishna MC (2015) PVP influence on PVA crystallinity and optical band Gap. Arch Phys Res 6(2):18–21Google Scholar
  31. 31.
    Rajeswari N, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Iwai Y, Kawamura J (2013) Structural, vibrational, thermal, and electrical properties of PVA/PVP biodegradable polymer blend electrolyte with CH3COONH4. Ionics 19:1105CrossRefGoogle Scholar
  32. 32.
    Shujahadeen BA, Mariwan AR, Ahang MH, Hameed MA (2017) Fabrication of polymer blend composites based on [PVA-PVP](1−x): (Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater Sci Semicond Process 71:197–203CrossRefGoogle Scholar
  33. 33.
    Shujahadeen BA, Ranjdar MA (2018) Crystalline and amorphous phase identification from the tan δ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS:AgNt]x:PEO(x–1) (10 ≤ x ≤ 50). Electrochim Acta 285:30–46CrossRefGoogle Scholar
  34. 34.
    Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37:1371–1376CrossRefGoogle Scholar
  35. 35.
    Rajeswari N, Selvasekarapandian S, MoniPrabu Karthikeyan S, Sanjeeviraja C (2013) Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers. Bull Mater Sci 36:333–339CrossRefGoogle Scholar
  36. 36.
    Abdelrazek EM, Elashmawi IS, El-khodary A, Yassin A (2010) Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr Appl Phys 2:607–613CrossRefGoogle Scholar
  37. 37.
    Laot CM, Marand E, Oyama HT (1999) Spectroscopic characterization of molecular interdiffusion at a poly(vinyl pyrrolidone)/vinyl ester interface. Polym 40:1095CrossRefGoogle Scholar
  38. 38.
    Wu H, Wu I, Chang F (2001) The interaction behavior of polymer electrolytes composed of poly(vinyl pyrrolidone) and lithium perchlorate (LiClO4). Polym. 42:555CrossRefGoogle Scholar
  39. 39.
    Ravi M, Pavani Y, KiranKumar K, Bhavani S, Sharma AK, NarasimhaRao VVR (2011) Studies on electrical and dielectric properties of PVP: KBrO4 complexed polymer electrolyte films. Mater Chem Phys 130:442–448CrossRefGoogle Scholar
  40. 40.
    Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA- LiCF3SO3 polymerelectrolyte. J NonCryst Solids 356:2277–2281CrossRefGoogle Scholar
  41. 41.
    Shujahadeen BA (2016) Structural, morphological and electrochemical impedance study of CS:LiTf based solid polymer electrolyte: reformulated Arrhenius equation for ion transport study. Int J Electrochem Sci 11(11):9228–9244Google Scholar
  42. 42.
    Deshmukh K, Ahamed MB, Polu AR (2016) Impedance spectroscopy, ionic conductivity and dielectric studies of new Li + ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. J Mater Sci Mater Electron 27:11410CrossRefGoogle Scholar
  43. 43.
    Ambika C, Hirankumar G (2016) Characterization CH3SO3H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery. J Appl Phys A Mater Sci Process 122:113CrossRefGoogle Scholar
  44. 44.
    Shujahadeen BA, ZulHazrin ZA (2015) Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J Appl Polym Sci 132:41774Google Scholar
  45. 45.
    Aziz SB (2013) Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iran Polym J 22:877CrossRefGoogle Scholar
  46. 46.
    Salleh NS, Shujahadeen BA, Aspanut Z, Kadir MFZ (2016) Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics 22:2157CrossRefGoogle Scholar
  47. 47.
    Aziz SB (2018) The mixed contribution of ionic and electronic carriers to conductivity in chitosan based solid electrolytes mediated by CuNt Salt. J Inorg Organomet Polym 28:1942CrossRefGoogle Scholar
  48. 48.
    Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679CrossRefGoogle Scholar
  49. 49.
    Shujahadeen BA (2016) Role of dielectric constant on ion transport: reformulated arrhenius equation. Adv Mater Sci Eng.  https://doi.org/10.1155/2016/2527013 Google Scholar
  50. 50.
    Shujahadeen BA, ZulHazrin ZA (2014) Electrical and morphological analysis of chitosan: AgTf solid electrolyte. Mater Chem Phys 144:280–286CrossRefGoogle Scholar
  51. 51.
    Shujahadeen BA, Thompson JW, Mohd FZK, Hameed MA (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Dev 3:1–17Google Scholar
  52. 52.
    Ahamad MN, Varma KBR (2010) Dielectric properties of (100-x) Li2B4O7 x(Ba5Li2Ti2Nb8O30) glasses and glass nanocrystal composites. Mater Sci Eng B 167:193–201CrossRefGoogle Scholar
  53. 53.
    Mohd Z, Iqbal Rafiuddin (2016) Structural electrical conductivity and dielectric behavior of Na2SO4–LDT composite solid electrolyte. J Adv Res 7:135–141CrossRefGoogle Scholar
  54. 54.
    Dieterich W, Maass P (2002) Non-Debye relaxations in disordered ionic solids. Chem Phys 284:439–467CrossRefGoogle Scholar
  55. 55.
    Shujahadeen BA, Ranjdar MA, Mariwan AR, Hameed MA (2017) Role of ion dissociation on DC Conductivity and silver nanoparticle formation in PVA:AgNt based polymer electrolytes: deep Insights to Ion transport mechanism. Polymers 9(8):338Google Scholar
  56. 56.
    Shujahadeen BA, Faraj MG, Omed G. Abdullah (2018) Impedance Spectroscopy as a Novel Approach to Probe the Phase Transition and Microstructures Existing in CS:PEO Based Blend Electrolytes 8:1430Google Scholar
  57. 57.
    Joncher AK (1987) Analysis of the alternating current properties of ionic conductors. Matter Sci 13:553–562CrossRefGoogle Scholar
  58. 58.
    Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2009) Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9:165–171CrossRefGoogle Scholar
  59. 59.
    Funke K, Roling B, Lange M (1998) Dynamics of mobile ions in crystals, glasses and Melts. Solid State Ion 105:195–208CrossRefGoogle Scholar
  60. 60.
    Vanitha D, Asathbahadur S, Nallamuthu N, Athimoolam S (2018) Structural, thermal and electrical properties of polyvinyl alcohol/poly(vinyl pyrrolidone)–sodium nitrate solid polymer blend electrolyte. Ionics 24:139–151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Multi-functional Materials laboratory, International Research CenterKalasalingam Academy of Research and EducationKrishnankoilIndia
  2. 2.Department of Physics, School of Advanced SciencesKalasalingam Academy of Research and EducationKrishnankoilIndia

Personalised recommendations