Advertisement

Polymer Bulletin

, Volume 75, Issue 9, pp 4311–4325 | Cite as

Polyurethanes in cardiovascular prosthetics

  • Alexander A. Gostev
  • Andrei A. Karpenko
  • Pavel P. Laktionov
Review

Abstract

Polyurethane has become a popular material in biomedical industry because of its good mechanical properties as well as biocompatibility and hemocompatibility. However, the material degrades during a long-term functioning of polyurethane grafts. To increase biostability, novel polyurethanes with a siloxane segment, polycarbonate polyurethanes, and nanocomposite polyurethanes are offered. Along with novel polyurethanes, modern tissue engineering technologies are well applicable for manufacture of the polyurethane products with unique properties. Different polyurethanes and modern technologies for producing cardiovascular grafts of polyurethane are discussed.

Keywords

Polyurethanes Tissue-engineered vascular grafts Electrospinning Electrospray Biocompatibility Biostability 

Notes

Funding

This work was supported by the Russian Science Foundation (Grant no. 17-75-30009).

Compliance with ethical standards

Conflict of interest

There is no ethical problem or conflict of interest.

References

  1. 1.
    Ounpuu S, Anand S, Yusuf S (2000) The impending global epidemic of cardiovascular diseases. Eur Heart J 21:880–883.  https://doi.org/10.1053/euhj.1999.1880 CrossRefGoogle Scholar
  2. 2.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB (2012) Heart disease and stroke statistics 2012 update: a report from the American Heart Association. Circulation 125:2–22.  https://doi.org/10.1161/CIR.0b013e3182456d46 CrossRefGoogle Scholar
  3. 3.
    Teebken OE, Haverich A (2002) Tissue engineering of small diameter vasculargrafts. Eur J Vasc Endovasc Surg 23:475–485CrossRefGoogle Scholar
  4. 4.
    Pawlowski KJ, Rittgers SE, Schmidt SP, Bowlin GL (2004) Endothelial cellseeding of polymeric vascular grafts. Frontiers Biosci 9:1412–1421CrossRefGoogle Scholar
  5. 5.
    Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ (2008) Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29:2891–2898.  https://doi.org/10.1016/j.biomaterials.2008.03.032 CrossRefGoogle Scholar
  6. 6.
    Bernacca GM, Mackay TG, Gulbransen MJ, Donn AW, Wheatley DJ (1997) Polyurethane heart valve durability: effects of leaflet thickness and material. Int J Artif Organs 20(6):327–331CrossRefGoogle Scholar
  7. 7.
    Bernacca GM, Mackay TG, Wheatley DJ (1996) In vitro function and durability of a polyurethane heart valve: material considerations. J Heart Valve Dis 5(5):538–542Google Scholar
  8. 8.
    Hsu SH, Lin ZC (2004) Biocompatibility and biostability of a series of poly(carbonate)urethanes. Colloids Surf B Biointerfaces 36(1):1–12.  https://doi.org/10.1016/j.colsurfb.2004.04.003 CrossRefGoogle Scholar
  9. 9.
    Stokes K, McVenes R, Anderson JM (1995) Polyurethane elastomer biostability. J Biomater Appl 9(4):321–354CrossRefGoogle Scholar
  10. 10.
    Pinchuk L (1994) A review of the biostability and carcinogenicity of polyurethanes in medicine and the new-generation of biostable polyurethanes. J Biomater Sci Polym Ed 6(3):225–267CrossRefGoogle Scholar
  11. 11.
    Anderson JM, Hiltner A, Wiggins MJ, Schubert MA, Collier TO, Kao WJ (1998) Recent advances in biomedical polyurethane biostability and biodegradation. Polym Int 46(3):163–171CrossRefGoogle Scholar
  12. 12.
    Szycher M (1988) Biostability of polyurethane elastomers: a critical review. J Biomater Appl 3(2):297–402CrossRefGoogle Scholar
  13. 13.
    Ghista DN, Reul H (1977) Optimal prosthetic aortic leaflet valve: design parametric and longevity analyses: development of the avcothane-51 leaflet valve based on the optimum design analysis. J Biomech 10(5–6):313–324CrossRefGoogle Scholar
  14. 14.
    Hergenrother RW, Wabers HD, Cooper SL (1993) Effect of hand segment chemistry and strain on the stability of polyurethanes: in vivo biostability. Biomaterials 14(6):449–458CrossRefGoogle Scholar
  15. 15.
    Gunatillake PA, Martin DJ, Meijs GF, McCarthy SJ, Adhikari R (2003) Designing biostable polyurethane elastomers for biomedical implants. Aust J Chem 56(6):545–557.  https://doi.org/10.1071/CH02168 CrossRefGoogle Scholar
  16. 16.
    Parins DJ, Black KM, McCoy KD, Horvath NJ (1981) In vivo degradation of a polyurethane. Cardiac Pacemakers. Inc., St. PaulGoogle Scholar
  17. 17.
    Kao WJ, Sapatnekar S, Hiltner A, Anderson JM (1996) Complement-mediated leukocyte adhesion on poly (etherurethane ureas) under shear stress in vitro. J Biomed Mater Res Part A 32(1):99–109CrossRefGoogle Scholar
  18. 18.
    Christenson EM, Anderson JM, Hiltner A (2006) Antioxidant inhibition of poly (carbonate urethane) in vivo biodegradation. J Biomed Mater Res Part A 76(3):480–490CrossRefGoogle Scholar
  19. 19.
    MacKay GA, Smith RM (1994) Supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry for the analysis of additives in polyurethanes. J Chromatogr Sci 32(10):455–460CrossRefGoogle Scholar
  20. 20.
    Schubert MA, Wiggins MJ, DeFife KM, Hiltner A, Anderson JM (1996) Vitamin E as an antioxidant for poly (etherurethane urea): in vivo studies. J Biomed Mater Res Part A 32(4):493–504CrossRefGoogle Scholar
  21. 21.
    Schubert MA, Wiggins MJ, Anderson JM, Hiltner A (1997) Comparison of two antioxidants for poly (etherurethane urea) in an accelerated in vitro biodegradation system. J Biomed Mater Res, Part A 34(4):493–505CrossRefGoogle Scholar
  22. 22.
    Zhang J, Doll BA, Beckman EJ, Hollinger JO (2003) A biodegradable polyurethane-ascorbic acid scaffold for bone tissue engineering. J Biomed Mater Res, Part A 67(2):389–400CrossRefGoogle Scholar
  23. 23.
    Kucinska-Lipka J, Gubanska I, Janik H, Sienkiewicz M (2015) Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Mater Sci Eng C 46:166–176.  https://doi.org/10.1016/j.msec.2014.10.027 CrossRefGoogle Scholar
  24. 24.
    Huang C, Chen R, Ke Q (2011) Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B 82:307–315.  https://doi.org/10.1016/j.colsurfb.2010.09.002 CrossRefGoogle Scholar
  25. 25.
    Blit PH, Battison KG, Yang M, Santerre JP (2012) Electrospun elastinlike polypeptide enriched polyurethanes and their interactions with vascular smooth muscle cells. Acta Biomater 8:2493–2503.  https://doi.org/10.1016/j.actbio.2012.03.032 CrossRefGoogle Scholar
  26. 26.
    Wang H, Feng Y, An B (2012) Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favouring human endothelial cells growth for vascular tissue engineering. J Mater Sci Mater Med 23:1499–1510.  https://doi.org/10.1007/s10856-012-4613-7 CrossRefGoogle Scholar
  27. 27.
    Huang C, Chen R, Ke Q (2011) Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B 82:307–315.  https://doi.org/10.1016/j.colsurfb.2010.09.002 CrossRefGoogle Scholar
  28. 28.
    Jia L, Prabhakaran MP, Qin X, Kai D (2013) Biocompatibility evaluation of protein-incorporated electrospun polyurethane-based scaffolds with smooth muscle cells for vascular tissue engineering. J Mater Sci 48:5113–5124.  https://doi.org/10.1007/s10853-013-7359-9 CrossRefGoogle Scholar
  29. 29.
    Detta N, Errico C, Dinucci D et al (2010) Novel electrospun polyurethane/gelatin composite for vascular grafts. J Mater Sci Mater Med 21:1761–1769.  https://doi.org/10.1007/s10856-010-4006-8 CrossRefGoogle Scholar
  30. 30.
    Wang H, Feng Y, Fang Z (2012) Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small diameters vascular tissue engineering. Mater Sci Eng 38:2306–2315.  https://doi.org/10.1016/j.msec.2012.07.001 CrossRefGoogle Scholar
  31. 31.
    Christenson EM, Dadsetan M, Wiggins M, Anderson JM, Hiltner A (2004) Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies. J Biomed Mater Res 69:407–416.  https://doi.org/10.1002/jbm.a.30002 CrossRefGoogle Scholar
  32. 32.
    Santerre JP, Woodhouse K, Laroche G, Labow RS (2005) Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 26:7457–7470.  https://doi.org/10.1016/j.biomaterials.2005.05.079 CrossRefGoogle Scholar
  33. 33.
    Wiggins MJ, Wilkoff B, Anderson JM, Hiltner A (2001) Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. J Biomed Mater Res Part B Appl Biomater 58:302–307CrossRefGoogle Scholar
  34. 34.
    Grasl C, Bergmeister H (2009) Electrospun polyurethane vascular grafts: In vitro mechanical behavior and endothelial adhesion molecule expression. http://interscience.wiley.com
  35. 35.
    Bergmeister H, Grasl C (2012) Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular-specific host cells. Artif Organs 36(1):54–61.  https://doi.org/10.1111/j.1525-1594.2011.01297.x CrossRefGoogle Scholar
  36. 36.
    Bergmeister H, Schreiber C (2013) Healing characteristics of electrospun polyurethane grafts with various porosities. Acta Biomater 9:6032–6040.  https://doi.org/10.1016/j.actbio.2012.12.009 CrossRefGoogle Scholar
  37. 37.
    Annis D, Bornat A, Edwards RO, Higham A, Loveday B, Wilson J (1978) An elastomeric vascular prosthesis. Trans Am Soc Artif Intern Organs 24:209–214Google Scholar
  38. 38.
    Fisher AC, How TV, de Cossart L, Annis D (1985) The longer term patency of a compliant small diameter arterial prosthesis: the effect of the withdrawing of aspirin and dipyradamole therapy: the effect of reduced compliance. Trans Am Soc Artif Intern Organs 31:324–328Google Scholar
  39. 39.
    Simmons A, Hyvarinen J, Odell RA, Martin DJ, Gunatillake PA, Noble KR (2004) Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials 25(20):4887–4900.  https://doi.org/10.1016/j.biomaterials.2004.01.004 CrossRefGoogle Scholar
  40. 40.
    Report of AorTech International plc., 15 Dec 2000Google Scholar
  41. 41.
    Hunt JA, Rhodes NP, Shortland AP, Williams DF (2000) A quantitative evaluation of the soft tissue to response to biostable polyurethanes. In: Transactions of sixth world biomaterials congress, vol II. Hawai, USA, p 468Google Scholar
  42. 42.
    Bernacca GM, Mackay TG, Gulbransen MJ, Donn AW, Wheatley DJ (1997) Polyurethane heart valve durability: effects of leaflet thickness and material. Int J Artif Organs 20(6):327–331CrossRefGoogle Scholar
  43. 43.
    Bernacca GM, Mackay TG, Wilkinson R, Wheatley DJ (1997) Polyurethane heart valves: fatigue failure, calcification, and polyurethane structure. J Biomed Mater Res 34(3):371–379CrossRefGoogle Scholar
  44. 44.
    Christenson EM, Anderson JM, Hiltner A (2004) Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations. J Biomed Mater Res A 70(2):245–255.  https://doi.org/10.1002/jbm.a.30067 CrossRefGoogle Scholar
  45. 45.
    Seifalian AM, Salacinski HJ, Tiwari A, Edwards A, Bowald S, Hamilton G (2003) In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials 24(14):2549–2557CrossRefGoogle Scholar
  46. 46.
    Salacinski HJ, Tai NR, Carson RJ, Edwards A, Hamilton G, Seifalian AM (2002) In vitro stability of a novel compliant poly(carbonate-urea)urethane to oxidative and hydrolytic stress. J Biomed Mater Res 59(2):207–218CrossRefGoogle Scholar
  47. 47.
    Kidane AG, Punshon G, Salacinski HJ, Ramesh B, Dooley A, Olbrich M et al (2006) Incorporation of a lauric acid-conjugated GRGDS peptide directly into the matrix of a poly(carbonate-urea)urethane polymer for use in cardiovascular bypass graft applications. J Biomed Mater Res A 79(3):606–617.  https://doi.org/10.1002/jbm.a.30817 CrossRefGoogle Scholar
  48. 48.
    Tiwari A, Kidane A, Salacinski H, Punshon G, Hamilton G, Seifalian AM (2003) Improving endothelial cell retention for single stage seeding of prosthetic grafts: use of polymer sequences of arginine–glycine–aspartate. Eur J Vasc Endovasc Surg 25(4):325–329.  https://doi.org/10.1053/ejvs.2002.1854 CrossRefGoogle Scholar
  49. 49.
    Zilla P, Brink J, Human P, Bezuidenhout D (2008) Prosthetic heart valves: catering for the few. Biomaterials 29(4):385–406.  https://doi.org/10.1016/j.biomaterials.2007.09.033 CrossRefGoogle Scholar
  50. 50.
    Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38(11):879–884.  https://doi.org/10.1021/ar050055b CrossRefGoogle Scholar
  51. 51.
    Kannan RY, Salacinski HJ, Ghanavi JE, Narula A, Odlyha M, Peirovi H (2007) Silsesquioxane nanocomposites as tissue implants. Plast Reconstr Surg 119(6):1653–1662.  https://doi.org/10.1097/01.prs.0000246404.53831.4c CrossRefGoogle Scholar
  52. 52.
    Kannan RY, Salacinski HJ, De Groot J, Clatworthy I, Bozec L, Horton M (2006) The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromol 7(1):215–223.  https://doi.org/10.1021/bm050590z CrossRefGoogle Scholar
  53. 53.
    Kannan RY, Salacinski HJ, Odlyha M, Butler PE, Seifalian AM (2006) The degradative resistance of polyhedral oligomeric silsesquioxane nano-core integrated polyurethanes: an in vitro study. Biomaterials 27(9):1971–1979.  https://doi.org/10.1016/j.biomaterials.2005.10.006 CrossRefGoogle Scholar
  54. 54.
    Sarkar S, Hamilton G, Seifalian AM (2007) Long term patency and transmural endothelialisation of small caliber microporous compliant vascular bypass grafts manufactured from poly(carbonate-urea)urethane incorporating polyhedral oligomeric silsesquioxane pendant nanocage within its hard segment in an ovine model. Presented to Society for Biomaterial Annual Meeting, April 2007, Chicago, USA, Abstract. http://www.biomaterials.org
  55. 55.
    Sarkar S, Burriesci G, Wojcik A, Aresti N, Hamilton G, Seifalian AM (2009) Manufacture of small calibre quadruple lamina vascular bypass grafts using a novel automated extrusion-phase-inversion method and nanocomposite polymer. J Biomech 42(6):722–730.  https://doi.org/10.1016/j.jbiomech.2009.01.003 CrossRefGoogle Scholar
  56. 56.
    Kidane AG, Burriesci G (2009) A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater 5:2409–2417.  https://doi.org/10.1016/j.actbio.2009.02.025 CrossRefGoogle Scholar
  57. 57.
    Jansen J, Reul H (1992) A synthetic three-leaflet valve. J Med Eng Technol 16(1):27–33CrossRefGoogle Scholar
  58. 58.
    Ahmed M, Hamilton G (2014) The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials 35:9033–9040.  https://doi.org/10.1016/j.biomaterials.2014.07.008 CrossRefGoogle Scholar
  59. 59.
    Davim PG (2012) The design and manufacture of medical devices. Woodhead Publishing Limited, Cambridge, pp 145–148CrossRefGoogle Scholar
  60. 60.
    Inoguchi H, Kwon IK, Inoue E, Takamizawa K, Maehara Y, Matsuda T (2006) Mechanical responses of a compliant electrospun poly (l-lactide-co-epsilon-caprolactone) small-diameter vascular graft. Biomaterials 27:1470–1478.  https://doi.org/10.1016/j.biomaterials.2005.08.029 CrossRefGoogle Scholar
  61. 61.
    Khorasani MT, Shorgashti S (2006) Fabrication of microporous polyurethane byspray phase inversion method as small diameter vascular grafts material. J Biomed Mater Res A 77:253–260.  https://doi.org/10.1002/jbm.a.30613 CrossRefGoogle Scholar
  62. 62.
    Chen JH, Laiw RF, Jiang SF, Lee YD (1998) Microporous segmented polyetherurethane vascular graft: dependency of graft morphology and mechanical properties on compositions and fabrication conditions. J Biomed Mater Res 48:235–245CrossRefGoogle Scholar
  63. 63.
    Smolders CA, Reuvers AJ (1992) Microstructures in phase-inversion membranes. J Membr Sci 73:259–275CrossRefGoogle Scholar
  64. 64.
    Doi K, Nakayama Y, Matsuda T (1996) Novel compliant and tissue-permeable microporous polyurethane vascular prosthesis fabricated using an excimer laser ablation technique. J Biomed Mater Res 31:27–33CrossRefGoogle Scholar
  65. 65.
    Kotch FW (2006) Self-assembly of synthetic collagen triple helices. Proc Natl Acad Sci USA 103(9):3028–3033.  https://doi.org/10.1073/pnas.0508783103 CrossRefGoogle Scholar
  66. 66.
    Ji C, Annabi N, Hosseinkhani M, Sivaloganathan S, Dehghani F (2012) Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomater 8:570–578.  https://doi.org/10.1016/j.actbio.2011.09.028 CrossRefGoogle Scholar
  67. 67.
    Singh M, Sandhu B, Scurto A, Berkland C, Detamore MS (2010) Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO(2) as a sintering agent. Acta Biomater 6:137–143.  https://doi.org/10.1016/j.actbio.2009.07.042 CrossRefGoogle Scholar
  68. 68.
    Dehghani F, Annabi N (2011) Engineering porous scaffolds using gasbased techniques. Curr Opin Biotechnol 22:661–666.  https://doi.org/10.1016/j.copbio.2011.04.005 CrossRefGoogle Scholar
  69. 69.
    Whang K, Healy KE (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837–842CrossRefGoogle Scholar
  70. 70.
    Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PK, Healy KE (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res 42:491–499CrossRefGoogle Scholar
  71. 71.
    Ahmed EM (2013) Hydrogel: preparation, characterization, and applications. J Adv Res 12:37–42.  https://doi.org/10.1016/j.jare.2013.07.006 Google Scholar
  72. 72.
    Kalis RW (1997) Reinforced vascular graft and method of making same. US Patent 5609624Google Scholar
  73. 73.
    Pinnau I, Koros WJ (1991) Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J Appl Polym Sci 43(8):1491–1502CrossRefGoogle Scholar
  74. 74.
    Huang YX, Ren J, Chen C, Ren TB, Zhou XY (2008) Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl 22:409–432.  https://doi.org/10.1177/0885328207077632 CrossRefGoogle Scholar
  75. 75.
    Blaker JJ, Knowles JC, Day RM (2008) Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomater 4:264–272.  https://doi.org/10.1016/j.actbio.2007.09.011 CrossRefGoogle Scholar
  76. 76.
    Gong Y, Ma Z, Gao C, Wang W, Shen J (2006) Specially elaborated thermally induced phase separation to fabricate poly(L-lactic acid) scaffolds with ultra large pores and good interconnectivity. J Appl Polym Sci 101:3336–3342.  https://doi.org/10.1002/app.23931 CrossRefGoogle Scholar
  77. 77.
    Shao J, Chen C, Wang Y, Chen X, Du C (2012) Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property. Polym Degrad Stab 97:955–963.  https://doi.org/10.1016/j.polymdegradstab.2012.03.014 CrossRefGoogle Scholar
  78. 78.
    Lloyd DR, Kinzer KE, Tseng HS (1990) Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J Membr Sci 32:123–156Google Scholar
  79. 79.
    Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL (2009) Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 61:1007.  https://doi.org/10.1016/j.addr.2009.07.012 CrossRefGoogle Scholar
  80. 80.
    Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61:988.  https://doi.org/10.1016/j.addr.2009.07.005 CrossRefGoogle Scholar
  81. 81.
    Dong Y, Liao S, Ngiam M, Chan CK, Ramakrishna S (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Tissue Eng 15:333.  https://doi.org/10.1016/j.addr.2009.07.007 CrossRefGoogle Scholar
  82. 82.
    Zhang Y, Lim CT, Ramakrishna S, Huang ZM (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 16:933.  https://doi.org/10.1007/s10856-005-4428-x CrossRefGoogle Scholar
  83. 83.
    Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenstrom P (2008) Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromol 9:1044.  https://doi.org/10.1021/bm701225a CrossRefGoogle Scholar
  84. 84.
    Ishii O, Shin M, Sueda T, Vacanti JP (2005) In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography. J Thorac Cardio Vasc Surg 130:1358.  https://doi.org/10.1016/j.jtcvs.2005.05.048 CrossRefGoogle Scholar
  85. 85.
    Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94:264.  https://doi.org/10.1002/jbm.b.31651 Google Scholar
  86. 86.
    Wheatley DJ, Raco L, Bernacca GM, Sim I, Belcher PR, Boyd JS (2000) Polyurethane: material for the next generation of heart valve prostheses. Eur J Cardiothorac Surg 17(4):440–448CrossRefGoogle Scholar
  87. 87.
    Torbati AH, Mather RT, Reeder JE (2014) Fabrication of a light-emitting shape memory polymeric web containing indocyanine green. J Biomed Mater Res B Appl Biomater 6:102.  https://doi.org/10.1002/jbm.b.33107 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexander A. Gostev
    • 1
  • Andrei A. Karpenko
    • 1
  • Pavel P. Laktionov
    • 1
    • 2
  1. 1.Department of Vascular and Hybrid Surgery, Meshalkin National Medical Research CenterMinistry of Public Health of the Russian FederationNovosibirskRussia
  2. 2.Institute of Chemical Biology and Fundamental Medicine, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations