Advertisement

Polymer Bulletin

, Volume 75, Issue 9, pp 4145–4163 | Cite as

Nanodispersion in transparent polymer matrix with high melting temperature contributing to the hybridization of heat-resistant organo-modified nanodiamond

  • Yusuke Kasahara
  • Yifei Guo
  • Taira Tasaki
  • Qi Meng
  • Manami Iizuka
  • Shuichi Akasaka
  • Atsuhiro Fujimori
Original Paper

Abstract

The outermost surface of a nanodiamond was modified with long-chain phosphonic acids. The thermal desorption of the modified chain was suppressed until 350 °C. Nanohybrids of the phosphonic acid-modified nanodiamonds were formed by melt-compounding them with transparent polymers with high melting points over 230 °C. The transparency of the nanohybrids containing the nanodiamonds was maintained and the size of the aggregated nanoparticles on the surface was found to be in the range of 40–70 nm. The melting temperature of the nanohybrid increased compared to that of the matrix polymer, and the D 200 crystallite size also improved. In addition, mechanical properties improved, and thermal degradation temperatures also increased; this is attributed to the good dispersion of the nanodiamonds in the polymer matrix. Furthermore, the nanohybrid exhibited the image projection ability derived from nanodiamonds with high refractive index dispersed in the matrix. Darkening due to carbonization was observed in the nanohybrid consisting of crystalline-fluorinated polymers, but it was overcome by complexing the modified nanodiamond with a fluorinated long-chain phosphonic acid. The desorbed modified chains were assumed to get incorporated into the fluoropolymer with a high molten viscosity and cause carbonization, and it seems that the miscibility of the fluorinated-modified chain resolved this issue.

Graphical abstract

Keywords

Nanodiamond Heat-resistant Surface modification Nanodispersion Nanocomposite Transparent nanohybrids 

Notes

Acknowledgements

The authors greatly appreciate the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for providing a Grant-in-Aid for Scientific Research [C, 17K05986 (A. F.)]. Furthermore, authors would like to thank Mr. Koichi Umemoto, Dr. Daisuke Shiro, Mr. Atsushi Kume, and Mr. Hisayoshi Ito of DAICEL Corporation for providing nanodiamond samples. A. F. offers heartfelt condolences to family and friends of his mentor, Professor Hiroo Nakahara, Saitama University who expired on December 6, 2016.

Supplementary material

289_2017_2259_MOESM1_ESM.pdf (767 kb)
Supplementary material 1 (PDF 767 kb)

References

  1. 1.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23CrossRefGoogle Scholar
  2. 2.
    Thompson BC, Frechet Jean M J (2007) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58–77CrossRefGoogle Scholar
  3. 3.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534CrossRefGoogle Scholar
  4. 4.
    Ajayan PM (1999) Nanotubes from carbo. Chem Rev 7:1787–1800CrossRefGoogle Scholar
  5. 5.
    Ogata T, Yagi R, Nakamura N, Kuwahara Y, Kurihara S (2012) Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors. ACS Appl Mater Interfaces 4:3769–3772CrossRefGoogle Scholar
  6. 6.
    Schrand AM, Ciftan Hens AA, Schenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 29:18–74CrossRefGoogle Scholar
  7. 7.
    Williams OA (2011) Nanocrystalline diamond. Diam Relat Mater 20:621–640CrossRefGoogle Scholar
  8. 8.
    Korobov MV, Avramenko NV, Bogachev AG, Rozhkova NN, Ōhsawa E (2007) Nanophase of water in nano-diamond gel. J Phys Chem C 111:7330–7334CrossRefGoogle Scholar
  9. 9.
    Ōsawa E (2007) Recent progress and perspectives in single-digit nanodiamond. Diam Relat Mater 16:2018–2022CrossRefGoogle Scholar
  10. 10.
    Journet C, Maser WK, Bernier P, Loiseau A, dela Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRefGoogle Scholar
  11. 11.
    Zou Q, Wang MZ, Li YG (2010) Analysis of the nanodiamond particle fabricated by detonation. J Exp Nanosci 5:319–328CrossRefGoogle Scholar
  12. 12.
    Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44:4415–4421CrossRefGoogle Scholar
  13. 13.
    Jie L, Andrew GR, Hongjie D, Jason HH, Bradley RK, Peter JB, Adrian L, Terry I, Konstantin S, Chad BH, Fernando RM, Young-Seok S, Lee TR, Daniel TC, Richard ES (1998) Fullerene pipes. Science 280:1253–1256CrossRefGoogle Scholar
  14. 14.
    Kamiya H, Iijima M (2010) Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci Technol Adv Mater 11:044304CrossRefGoogle Scholar
  15. 15.
    Zaman I, Kuan HC, Meng Q, Michekmore A, Kawashima N, Pitt T, Zhang L, Gouda S, Luong L, Ma J (2012) A facile approach to chemically modified graphene and its polymer nanocomposites. Adv Funct Mater 22:2735–2743CrossRefGoogle Scholar
  16. 16.
    Fujimori A, Kusaka J, Nomura R (2011) Formation and structure of organized molecular films for organo-modified montmorillonite and mixed monolayer behavior with poly(l-lactide). Polym Eng Sci 51:1099–1107CrossRefGoogle Scholar
  17. 17.
    Fujimori A, Honda N, Iwashia H, Kaneko Y, Arai S, Sumita M, Akasaka S (2014) Formation and structure of fine multi-particle layered organo-modified zirconium dioxides fabricated by Langmuir–Blodgett technique. Colloids Surf A 446:109–117CrossRefGoogle Scholar
  18. 18.
    Meng Q, Honda N, Uchida S, Hashimoto K, Shibata H, Fujimori A (2015) Giant two-dimensional zinc oxide nanodisc crystal creation using single-particle layer of organo-modified inorganic fine particles. J Colloid Interfaces Sci 453:90–99CrossRefGoogle Scholar
  19. 19.
    Fujimori A, Ohmura K, Honda N, Kakizaki K (2015) Creation of high-density and low-defect single-layer film of magnetic nanoparticles by method of interfacial molecular films. Langmuir 31:3254–3261CrossRefGoogle Scholar
  20. 20.
    Fujimori A, Kasahara Y, Honda N, Akasaka S (2015) The role of modifying molecular chains in the formation of organized molecular films of organo-modified nanodiamond: construction of a highly-ordered low defect particle layer, and evaluation of desorption behavior of organic chains. Langmuir 31:2895–2904CrossRefGoogle Scholar
  21. 21.
    Fujimori A, Arai S, Sotome Y, Hashimoto M (2014) Improvement of thermal stability of enzyme via immobilization on Langmuir–Blodgett films of organo-modified aluminosilicate with high coverage. Colloids Surf A 448:45–52CrossRefGoogle Scholar
  22. 22.
    Honda N, Hashimoto K, Shibata H, Fujimori A (2014) Formation and structure of single particle layer induced to construction of new type two-dimensional organic/inorganic nanohybrids. Trans Mater Res Soc Jpn 39:91–94CrossRefGoogle Scholar
  23. 23.
    Umemoto K, Kume A, Ito H, Fujimori A (2016) Japan Patent JP2017-35673Google Scholar
  24. 24.
    Umemoto K, Kume A, Ito H, Fujimori A (2017) Japan Patent, JP2016-162469Google Scholar
  25. 25.
    Wang Y, Chen FB, Wu KC, Wang JC (2006) Shear rheology and melt compounding of compatibilized-polypropylene nanocomposites: effect of compatibilizer molecular weight. Polym Eng Sci 46:289–302CrossRefGoogle Scholar
  26. 26.
    Yoshida H (1995) Relationship between enthalpy relaxation and dynamic mechanical relaxation of engineering plastics. Thermochim Acta 266:119–127CrossRefGoogle Scholar
  27. 27.
    Maekawa A, Kanno Z, Wada T, Hongo T, Doi H, Hanawa T, Ono T, Uo M (2015) Mechanical properties of orthodontic wires made super engineering plastic. Dent Mater J 34:114–119CrossRefGoogle Scholar
  28. 28.
    Conte M, Igartua A (2012) Study of PTFE composites tribological behavior. Wear 296:568–574CrossRefGoogle Scholar
  29. 29.
    Wakahara T, Sathish M, Miyazawa K, Hu C, Tateyama Y, Nemoto Y, Sasaki T, Ito O (2009) Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets. J Am Chem Soc 131:9940–9944CrossRefGoogle Scholar
  30. 30.
    Criado J, Real C (1983) Mechanism of the inhibiting effect of phosphate on the anatase rutile transformation induced by thermal and mechanical treatment of TiO2. J Chem Soc 79:2765–2771Google Scholar
  31. 31.
    Traina CA, Schwartz J (2007) Surface modification of Y2O3 nanoparticles. Langmuir 23:9158–9161CrossRefGoogle Scholar
  32. 32.
    Sakajiri K, Masuko S, Kaneko T, Masuda H, Tadamasa T, Watanabe J, Tokita M (2014) Nanodiamond-dispersed transparent screen. NIHON GAZOU GAKKAISHI 53:426–429Google Scholar
  33. 33.
    Runt J, Jin L, Talibuddin S, Davis CR (1995) Crystalline Homopolymer-copolymer blends: poly(tetrafluoroethylene)–poly(tetrafluoroethylene-co-perfluoroalkylvinyl ether). Macromolecules 28:2781–2786CrossRefGoogle Scholar
  34. 34.
    Varcoe JR, Slade RCT (2006) An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun 8:839–843CrossRefGoogle Scholar
  35. 35.
    Liu Y, Gu Z, Margrave JL, Khabashesku VN (2004) Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem Mater 16:3924–3930CrossRefGoogle Scholar
  36. 36.
    Liang Y, Ozawa M, Krueger A (2009) A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3:2288–2296CrossRefGoogle Scholar
  37. 37.
    Presti C, Alauzun JG, Laurencin D, Mutin PH (2013) Improvement of the oxidative stability of nanodiamonds by surface phosphorylation. Chem Mater 25:2051–2055CrossRefGoogle Scholar
  38. 38.
    Zhang Q, Mochalin VN, Neitzel L, Knoke IY, Han J, Klug CA, Zhou JG, Leikes PI, Gogotsi Y (2011) Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32:87–94CrossRefGoogle Scholar
  39. 39.
    Krueger A, Boedeker T (2008) Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam Relat Mater 17:1367–1370CrossRefGoogle Scholar
  40. 40.
    Wang Y, Huang H, Zang J, Meng F, Dong L, Su J (2012) Electrochemical behavior of fluorinated and aminated nanodiamond. Int J Electrochem Sci 7:6807–6815Google Scholar
  41. 41.
    Sun X, Ding Y, Zhang B, Huang R, Chen D, Su DS (2015) Insight into the enhanced selectivity of phosphate-modified annealed nanodiamond for oxidative dehydrogenation reactions. ACS Catal 5:2436–2444CrossRefGoogle Scholar
  42. 42.
    Mamun MAA, Soutome Y, Kasahara Y, Meng Q, Akasaka S, Fujimori A (2015) Fabrication of transparent nanohybrids with heat resistance using high-density amorphous formation and uniform dispersion of nanodiamond. ACS Appl Mater Interfaces 7:17792–17801CrossRefGoogle Scholar
  43. 43.
    Trabelsi S, Zhang SS, Zhang ZC, Lee TR, Schwartz DK (2009) Semi-fluorinated phosphonic acids form stable nanoscale clusters in Langmuir–Blodgett and self-assembled monolayers. Soft Matter 5:750–758CrossRefGoogle Scholar
  44. 44.
    Dorigato A, Pegoretti A (2010) Tensile creep behaviour of polymethylpentene–silica nanocomposites. Polym Int 59:719–724Google Scholar
  45. 45.
    Clayton LM, Gerasimov TG, Cinke M, Meyyappan M, Harmon JP (2006) Dispersion of single-walled carbon nanotubes in a non-polar polymer, poly(4-methyl-1-pentene). J Nanosci Nanotechnol 6:2520–2524CrossRefGoogle Scholar
  46. 46.
    Rosa CD, Venditto V, Guerra G, Corradini P (1995) Crystal structure of syndiotactic poly(4-metyl-1-pentene). Polymer 36:3619–3624CrossRefGoogle Scholar
  47. 47.
    Wahab JA, Lee H, Wei K, Nagaishi T, Khatri Z, Behera BK, Kim KB, Kim IS (2017) Post-Electrospinning thermal treatments on poly(4-methyl-1-pentene) nanofiber membranes for improved mechanical properties. Polym Bull 74:5221–5230CrossRefGoogle Scholar
  48. 48.
    Bunn CW, Howells ER (1954) Structures of molecules and crystals of fluoro-carbons. Nature 174:549–551CrossRefGoogle Scholar
  49. 49.
    Xing Q, Zhang XQ, Luo FL, Liu GM, Wang DJ (2011) Influence of stretching on crystallization behavior of poly(l-lactic acid). Chem J Chin U 32:971–977Google Scholar
  50. 50.
    Kusanagi H, Takase M, Chatani Y, Tadokoro H (1978) Crystal structure of isotactic poly(4-methyl-1-pentene). J Polym Sci Polym Phys 16:131–142CrossRefGoogle Scholar
  51. 51.
    Xu LY, Yan HW, Gong L, Yin B, Yang MB (2015) Poly(4-methyl-1-pentene)/alkylated graphene oxide nanocomposites: the emergence of a new crystal structure. RSC Adv 5:4238–4244CrossRefGoogle Scholar
  52. 52.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures. Wiley, New YorkGoogle Scholar
  53. 53.
    Wanjale SD, Jog JP (2004) Poly(4-methyl-1-pentene)/clay nanocomposites: effect of organically modified layered silicates. Polym Int 53:101–105CrossRefGoogle Scholar
  54. 54.
    Wanjale SD, Jog JP (2003) Effect of modified layered silicates and compatibilizer on properties of PMP/clay nanocomposites. J Appl Polym Sci 90:3233–3238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  2. 2.Graduate School of Science and EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations