Advertisement

Polymer Bulletin

, Volume 75, Issue 9, pp 4117–4127 | Cite as

Synthesis and properties of thermo-responsive azobenzene-based supramolecular dendronized copolymer

  • ChangAn Yang
  • Ling Chen
  • He Huang
  • Ying Lu
  • JianMin Yi
Original Paper
  • 116 Downloads

Abstract

For the development of stimuli-responsive polymers, a series of novel thermo-responsive azobenzene-based supramolecular dendronized copolymers (4-(4′-(3, 4, 5-tris (2-(2-methoxyethoxy) ethoxy) benzyloxy) phenylazo) benzyl methacrylate) x -co-(N-Vinyl Pyrrolidone)y (PTEO2Azo x -co-PVP y ) have been successfully synthesized. We have investigated how the effects of temperature, content of azobenzene moiety, concentration, type and concentration of salt on the phase-transition behaviors of the dendronized copolymers, and the dendronized copolymers PTEO2Azo x -co-PVP y all showed the remarkably thermo-responsive phase-transition behaviors.

Keywords

Dendronized copolymer Thermo-sensitivity Azobenzene moiety Phase transition 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21576076 and 21471053) and Hunan Provincial Innovation Foundation For Postgraduate (No. CX2017B767).

References

  1. 1.
    Strandman S, Zhu XX (2015) Thermo-responsive block copolymers with multiple phase transition temperatures in aqueous solutions. Prog Polym Sci 42:154–176CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Chen S, Pang M (2016) Synthesis and micellization of a multi-stimuli responsive block copolymer based on spiropyran. Polym Chem 7:6880–6884CrossRefGoogle Scholar
  3. 3.
    Lin Z, Yang Y, Zhang A (2017) Polymer-engineered nanostructures for advanced energy applications. Springer, Cham, pp 173–304CrossRefGoogle Scholar
  4. 4.
    Zou J, Guan B, Liao X (2009) Dual reversible self-assembly of PNIPAM-based amphiphiles formed by inclusion complexation. Macromolecules 42(19):7465–7473CrossRefGoogle Scholar
  5. 5.
    Ayres N, Cyrus CD, Brittain WJ (2007) Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization. Langmuir 23(7):3744–3749CrossRefGoogle Scholar
  6. 6.
    Roy D, Cambre JN, Sumerlin BS (2009) Triply-responsive boronic acid block copolymers: solution self-assembly induced by changes in temperature, pH, or sugar concentration. Chem Commun 16:2106–2108CrossRefGoogle Scholar
  7. 7.
    Ayres N, Boyes SG, Brittain WJ (2007) Stimuli-responsive polyelectrolyte polymer brushes prepared via atom-transfer radical polymerization. Langmuir 23(1):182CrossRefGoogle Scholar
  8. 8.
    Han D, Yu X, Chai Q, Ayres N, Steckl AJ (2017) Stimuli-responsive self-immolative polymer nanofiber membranes formed by coaxial electrospinning. ACS Appl Mater Interfaces 9:11858–11865CrossRefGoogle Scholar
  9. 9.
    Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Winnik F (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101CrossRefGoogle Scholar
  10. 10.
    Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35(1):3–23CrossRefGoogle Scholar
  11. 11.
    Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287(6):627–643CrossRefGoogle Scholar
  12. 12.
    Dimitrov I, Trzebicka B, Müller AHE (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32(11):1275–1343CrossRefGoogle Scholar
  13. 13.
    Zhou K, LuY Li J, Shen L, Zhang G, Xie Z, Wu C (2008) The coil-to-globule-to-coil transition of linear polymer chains in dilute aqueous solutions: effect of intrachain hydrogen bonding. Macromolecules 41(22):8927–8931CrossRefGoogle Scholar
  14. 14.
    Convertine AJ, Ayres N, Scales CW, Lowe AB, Mccormick CL (2004) Facile, controlled, room-temperature raft polymerization of n-isopropylacrylamide. Biomacromol 5(4):1177–1180CrossRefGoogle Scholar
  15. 15.
    Jing YQ, Zhu Y, Roth PJ, Davis TP, Lowe AB (2013) Raft synthesis and aqueous solution behavior of novel ph- and thermo-responsive (co)polymers derived from reactive poly(2-vinyl-4,4-dimethylazlactone) scaffolds. Macromolecules 46(18):7290–7302CrossRefGoogle Scholar
  16. 16.
    Zhu Y, Lowe AB, Roth PJ (2014) Postpolymerization synthesis of (bis)amide (co)polymers: thermoresponsive behavior and self-association. Polymer 55(17):4425–4431CrossRefGoogle Scholar
  17. 17.
    Maji T, Banerjee S, Bose A, Mandal TK (2017) Stimuli-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and corresponding antifouling polymer with tunable thermosensitivity. Polym Chem 8:3164–3176CrossRefGoogle Scholar
  18. 18.
    Biswas Y, Maji T, Dule M, Mandal TK (2016) Tunable doubly responsive UCST-type phosphonium poly(ionic liquid): a thermosensitive dispersant for carbon nanotubes. Polym Chem 7(4):867–877CrossRefGoogle Scholar
  19. 19.
    Woodfield PA, Zhu Y, Pei Y, Roth PJ (2015) Hydrophobically modified sulfobetaine copolymers with tunable aqueous ucst through postpolymerization modification of poly(pentafluorophenyl acrylate). Macromolecules 47(2):750–762CrossRefGoogle Scholar
  20. 20.
    Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly (N-isopropylacrylamide), poly (N-vinylcaprolactam) and amphiphilically modified poly (N-vinylcaprolactam). Biomaterials 26(16):3055–3064CrossRefGoogle Scholar
  21. 21.
    Aoshima S, Sugihara S (2000) Syntheses of stimuli-responsive block copolymers of vinyl ethers with side oxyethylene groups by living cationic polymerization and their thermosensitive physical gelation. J Polym Sci Part A Polym Chem 38(21):3962–3965CrossRefGoogle Scholar
  22. 22.
    Maeda Y (2001) IR spectroscopic study on the hydration and the phase transition of poly(vinyl methyl ether) in water. Langmuir 17(5):1737–1742CrossRefGoogle Scholar
  23. 23.
    Sugihara S, Hashimoto K, Okabe S, Shibayama M, Kanaoka S, Aoshima S (2004) Stimuli-responsive diblock copolymers by living cationic polymerization: precision synthesis and highly sensitive physical gelation. Macromolecules 37(2):336–343CrossRefGoogle Scholar
  24. 24.
    Hoogenboom R, Thijs HM, Jochems MJ, van Lankvelt BM, Fijten MW, Schubert US (2008) Tuning the LCST of poly (2-oxazoline) s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem Commun 44:5758–5760CrossRefGoogle Scholar
  25. 25.
    Weber C, Becer CR, Hoogenboom R, Schubert US (2009) Lower critical solution temperature behavior of comb and graft shaped poly[oligo (2-ethyl-2-oxazoline) methacrylate]s. Macromolecules 42(8):2965–2971CrossRefGoogle Scholar
  26. 26.
    Tomalia DA, Fréchet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A Polym Chem 40:2719–2728CrossRefGoogle Scholar
  27. 27.
    Percec V, Ahn CH, Ungar G, Yeardley DJP, Moller M, Sheiko SS (1998) Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391:161–164CrossRefGoogle Scholar
  28. 28.
    Percec V, Sun HJ, Leowanawat P, Peterca M, Graf R, Spiess HW, Zeng XB, Ungar G, Heiney PA (2013) Transformation from kinetically into thermodynamically controlled self-organization of complex helical columns with 3D periodicity assembled from dendronized perylene bisimides. J Am Chem Soc 135:4129–4148CrossRefGoogle Scholar
  29. 29.
    Li W, Zhang AF, Feldman K, Walde P, Schlüter AD (2008) Thermoresponsive dendronized polymers. Macromolecules 41:3659–3667CrossRefGoogle Scholar
  30. 30.
    Li W, Zhang A, Schlüter AD (2008) Thermoresponsive dendronized polymers with tunable lower critical solution temperatures. Chem Commun 43:5523–5525CrossRefGoogle Scholar
  31. 31.
    Roeser J, Moingeon F, Heinrich B, Masson P, Arnaud-Neu F, Rawiso M, Méry S (2011) Dendronized polymers with peripheral oligo(ethylene oxide) chains: thermoresponsive behavior and shape anisotropy in solution. Macromolecules 44:8925–8935CrossRefGoogle Scholar
  32. 32.
    Liu LX, Li W, Liu K, Yan JT, Hu GX, Zhang AF (2011) Comblike thermoresponsive polymers with sharp transitions: synthesis, characterization, and their use as sensitive colorimetric sensors. Macromolecules 44:8614–8621CrossRefGoogle Scholar
  33. 33.
    Yang C, Chen L, Lu Y, Huang H (2016) Dual thermo-and light-responsive dendron-jacketed homopolymers containing photoswitchable azobenzene groups via a macromonomer route. Polym Chem 7(45):6885–6889CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangPeople’s Republic of China

Personalised recommendations