Advertisement

Polymer Bulletin

, Volume 75, Issue 9, pp 4003–4018 | Cite as

Effect of interface in dielectric relaxation properties of PEMA–BaZrO3 nanocomposites

  • Pramod Kumar Singh
  • Pankaj Goyal
  • Ashutosh Sharma
  • Rajesh
  • Dalveer Kaur
  • M. S. Gaur
Original Paper

Abstract

XRD peaks demonstrate the interaction of nanoparticles with polymer matrix. It is evident from the dielectric data that observed change in dielectric parameters would result from appropriate changes in chain mobility due to nanoparticles–polymer interactions. FT-IR spectra represent the significant changes in intensity, shape and position of the different vibrational bands corresponding to –OH stretching, C–O–C stretching, C–H stretching and C–O–C in C–H stretching modes occur as a result of the incorporation of BaZrO3 nanofiller. Thermally stimulated discharge current (TSDC) and transient discharging current study presented the dipolar and interfacial type of relaxations.

Keywords

PEMA BaZrO3 FT-IR Cole–Cole plot TSDC 

Notes

Acknowledgements

Authors are thankful to Directors, AIRF, JNU New Delhi (India) for FT-IR and XRD characterization facilities.

References

  1. 1.
    Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites a small part of the story. J Miner Met Mater Soc 59:53–60CrossRefGoogle Scholar
  2. 2.
    Hanemann T, Vinga SD (2010) Polymer–nanoparticle composites from synthesis to modern applications. Materials 3:3468–3517CrossRefGoogle Scholar
  3. 3.
    Paul DR, Robeson LM (2008) Polymer nanotechnology nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  4. 4.
    Koch N (2007) Organic electronic devices and their functional interfaces. Chem Phys Chem 8:1438–1455CrossRefGoogle Scholar
  5. 5.
    Krebs FC, Hoffmann SV, Jorgensen M (2003) Orientation effects in self-organized, highly conducting regioregular poly(3-hexylthiophene) determined by vacuum ultraviolet spectroscopy. Synth Met 138:471–474CrossRefGoogle Scholar
  6. 6.
    Green W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS (2002) Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. Org Electron 3:105–110CrossRefGoogle Scholar
  7. 7.
    Kline RJ, McGehee MD, Kadnikova EN, Liu J, Frechet MJ (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater 15:1519–1522CrossRefGoogle Scholar
  8. 8.
    Salleo A, Chabinyc ML, Yang MS, Street RA (2002) Polymer thin-film transistors with chemically modified dielectric interfaces. Appl Phys Lett 81:4383–4385CrossRefGoogle Scholar
  9. 9.
    Corcoran N, Arias AC, Kim JS, MacKenzie JD, Friend RH (2003) Increased efficiency in vertically segregated thin-film conjugated polymer blends fo light-emitting diodes. Appl Phys Lett 82:299–301CrossRefGoogle Scholar
  10. 10.
    Rathore BS, Gaur MS, Singh KS (2012) Investigation of optical and thermally stimulated properties of SiO2 nanoparticles-filled polycarbonate. J Appl Poly Sci 126:960–968CrossRefGoogle Scholar
  11. 11.
    Shi Y, Liu J, Yang YJ (2007) Device performance and polymer morphology in polymer light emitting diodes the control of thin film morphology and device quantum efficiency. Appl Phys 87:4254–4263CrossRefGoogle Scholar
  12. 12.
    Arias AC, Corcoran N, Banach M, Friend RH, MacKenzie JD, Huck WTS (2002) Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing. Appl Phy Lett 80:1695–1697CrossRefGoogle Scholar
  13. 13.
    Bucci C, Fieshi R, Guidi G (1996) Ionic thermo currents in dielectrics. Phys Rev 148:816–823CrossRefGoogle Scholar
  14. 14.
    Arias AC, MacKenzie JD, Stevenson R, Halls JJM, Inbasekaran M, Woo EP, Richards D, Friend RH (2001) Photovoltaic performance and morphology of polyfluorene blends a combined microscopic and photovoltaic investigation. Macromolecules 34:6005–6013CrossRefGoogle Scholar
  15. 15.
    Reichmanis E, Ober CK, MacDonald SA, Iwayanagi T, Nishikubo T (1995) An analysis of process issues with the chemically amplified positive resists”, in microelectronics technology polymers in advanced imaging and packaging. ACS Symp Ser 614:04–20CrossRefGoogle Scholar
  16. 16.
    Kumar A, Nath R (1983) Isothermal transient current studies in cellulose acetate films. J Appl Polym Sci 28:2483–2489CrossRefGoogle Scholar
  17. 17.
    Bouzidi A, Jilani W, Guermazia KOH (2015) Study of the effects of various parameters on the transient current on In2O3 Sn filler effect in epoxy resin for dielectric application. Superlattices Microstruct 83:796–810CrossRefGoogle Scholar
  18. 18.
    Sebastian MT, Jantunen H (2010) Polymer–ceramic composites of 0–3 connectivity for circuits in electronics. Int J Appl Ceram Technol 7:415–434Google Scholar
  19. 19.
    Fawaz F, Mittal V (2015) Synthesis of polymer nanocomposites review of various techniques. Wiley-VCH verlag GmbH & Co KGaA, WeinheimGoogle Scholar
  20. 20.
    Jordana J, Jacobb KI, Tannenbaumc R, Sharafb MA, Jasiukd I (2005) Experimental trends in polymer nanocomposites a review. Mater Sci Eng A 393:1–11CrossRefGoogle Scholar
  21. 21.
    De Leon ALC, Chen Q, Palaganas Jerome O, Manapat J, Advincula RC (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155CrossRefGoogle Scholar
  22. 22.
    Qi L, Petersson L, Liu T (2014) Review of recent activities on dielectric films for capacitor applications. J Int Counc Electr Eng 4:1–6CrossRefGoogle Scholar
  23. 23.
    Xiao M, Du BX (2016) Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt 1:34–42CrossRefGoogle Scholar
  24. 24.
    Gridnev SA (2002) Dielectric relaxation in disordered polar dielectrics. Ferroelectrics 266:507–545CrossRefGoogle Scholar
  25. 25.
    Buscaglia V, Buscaglia M, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorny J, Petzelt J (2006) Grain size and grain boundary-releted effects on the properties of nanocrystalline barium titanate ceramics. J Eur Ceram Soc 26:2889–2898CrossRefGoogle Scholar
  26. 26.
    Kinoshita K, Yamaji A (1976) Grain-size effects on dielectric properties in barium titanate ceramics. J Appl Phys 47:371CrossRefGoogle Scholar
  27. 27.
    Sainia DS, Bhattacharya D (2016) Electrical properties of BaZrO3 ceramic synthesized by flash pyrolysis process. AIP Conf Proc 020104:1724Google Scholar
  28. 28.
    Kumar R, Subramania A, Sundaram NTK, Kumar GV, Baskaran IJ (2007) Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. Membr Sci 300:104–110CrossRefGoogle Scholar
  29. 29.
    Mathew CM, Karthika B, Ulaganathan M, Rajendran S (2015) Bull Mater Sci 38:1CrossRefGoogle Scholar
  30. 30.
    Lee DC, Jang LW (1996) Preparation and charectrization of PMMA–clay hybrid composite by emulsion polymerization. J Appl Poly Sci 61:1117–1122CrossRefGoogle Scholar
  31. 31.
    Brosseau C, Queffelec P, Talbot P (2001) Microwave characterization of filled polymers. J Appl Phys 89:4532–4540CrossRefGoogle Scholar
  32. 32.
    Mathioudakis GN, Patsidis AC, Psarras GC (2014) Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim 116:27–33CrossRefGoogle Scholar
  33. 33.
    Tareev B (1979) Physics of dielectric materials. MIR Publications, MoscowGoogle Scholar
  34. 34.
    Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ion 152:291–294CrossRefGoogle Scholar
  35. 35.
    Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn HJ (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2:1697–1733CrossRefGoogle Scholar
  36. 36.
    Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 11:739–753CrossRefGoogle Scholar
  37. 37.
    Lewis TJ (2005) Interfaces nanometric dielectrics. J Phys D Appl Phys 38:202CrossRefGoogle Scholar
  38. 38.
    Tanaka H (2015) Epitaxial growth of oxide films and nanostructures. Handbook of crystal growth, 2nd edn. Elsevier, Amsterdam, pp 555–604CrossRefGoogle Scholar
  39. 39.
    Sun Y, Zhang Z, Wong CP (2005) Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer 46:2297–2305CrossRefGoogle Scholar
  40. 40.
    Cole RS and Cole RH, J Chem Phys 9:1941–341Google Scholar
  41. 41.
    McCrum NG, Read BE, Willians G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, New York, p 478Google Scholar
  42. 42.
    Batra AK, Edwards ME, Alomari A, Elkhaldy A (2015) Dielectric behavior of P(VDF-TrFE)/PZT nanocomposites films doped with multi-walled carbon nanotubes (MWCNT). Am J Mater Sci 5:55–61Google Scholar
  43. 43.
    Bishay ST (2000) Numerical methods for the calculation of the Cole–Cole parameters. Egypt J Sol 23:2Google Scholar
  44. 44.
    Sessler GM (1980) Physical principles of electrets, “Electrets”. Topics in applied physics, vol 33. Springer-Verlag, New York, pp 13–80Google Scholar
  45. 45.
    Lewis TJ (1994) Nanometric dielectrics. IEEE Trans DEI 1:812–825CrossRefGoogle Scholar
  46. 46.
    Schadler LS, Kumar SK, Benicewicz BC, Lewis SL, Harton SE (2007) Designed interfaces in polymer nanocomposites: a fundamental viewpoint. Mater Res Bull 32:335–340CrossRefGoogle Scholar
  47. 47.
    Pillai PKC, Narula GK, Tripathi AK, Mendiratta RG (1983) Polarization and depolarization studies in polypropylene polycarbonate blends. Phys Rev B 27:2508–2514CrossRefGoogle Scholar
  48. 48.
    Pillai PKC, Brijesh Gupta K, Goel M (1981) Polarization studies by the TSC technique on a blend of cellulose acetate and polyvinyl acetate. J Polym Sci Polym Phy Ed 19:1461–1470CrossRefGoogle Scholar
  49. 49.
    Mudarra M, Belana J (1997) Study of poly(Methyl methacrylate) space-charge relaxation by Tsdc. Polymer 38:5815–5821CrossRefGoogle Scholar
  50. 50.
    Garg AK, Keller J, Datt SC, Chand N (2000) Polarization absorption currents in poly(vinyledene fluoride) poly(methylmethacrylate) blend system. Indian J Eng Mater Sci 7:40–46Google Scholar
  51. 51.
    Indolia AP, Gaur MS (2013) Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J Therm Anal Calorim 113:821–830CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Pramod Kumar Singh
    • 1
  • Pankaj Goyal
    • 1
  • Ashutosh Sharma
    • 2
  • Rajesh
    • 3
  • Dalveer Kaur
    • 3
  • M. S. Gaur
    • 1
  1. 1.Shri Anand Swaroop Interdisiplenray Research LaboratoryHindustan College of Science and TechnologyMathuraIndia
  2. 2.Department of Mechanical EngineeringHindustan College of Science and TechnologyMathuraIndia
  3. 3.Department of Electronics and CommunicationPunjab Technical UniversityJalandharIndia

Personalised recommendations