Advertisement

Polymer Bulletin

, Volume 75, Issue 9, pp 3897–3916 | Cite as

Designing of polyhedral oligomeric silsesquioxane (POSS)-based dithiol/dimethacrylate nano-hybrids

  • Nicoleta M. Florea
  • Celina M. Damian
  • Cristina Ionescu
  • Adriana Lungu
  • Eugeniu Vasile
  • Horia Iovu
Original Paper

Abstract

In this study, different dithiol/dimethacrylate formulations ± octamethacryl-polyhedral oligomeric silsesquioxanes (POSS) were synthesized and fully characterized in terms of structural, morphological, and thermostability features. The obtained results indicate that the incorporation of both dithiol and octamethacryl-POSS nanofillers within dimethacrylate matrix exhibits a significant influence on the surface chemistry, polymerization kinetics, thermostability, and thermomechanical properties of the resulting networks. Kinetic analysis showed that the presence of dithiol compound improves the conversion degree of the final dithiol/dimethacrylate networks, while thermal and thermomechanical analyses exhibit that octamethacryl-POSS produces nano-hybrids with enhanced thermostability and storage moduli.

Keywords

Polyhedral oligomeric silsesquioxanes (POSS) Dithiol/dimethacrylate formulations Nano-hybrids Thermal properties Spectroscopy Morphology 

Notes

Acknowledgements

This work was supported by the Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCDI) Project Number PNII-RU-TE-2014-4-1423 (Contract No: 58/2015). The SEM analyses on the samples were possible due to EU-funding grand POSCCE-A2-O2.2.1-2013-1/Axa prioritara 2, Project No. 638/12.03.2014, code SMIS-CSNR 48652.

References

  1. 1.
    Bowman CN, Kloxin CJ (2008) Towards an enhanced understanding and implementation of photopolymerization reactions. AIChE J 54:2775–2795CrossRefGoogle Scholar
  2. 2.
    Fouassier JP (1995) Photoinitiation photopolymerization and photocuring: fundamentals and application. Hanser Publishers, MunichGoogle Scholar
  3. 3.
    Steinhauser N, Mülhaupt R (1994) Preparation and cure behavior of dimethacrylates containing oligo(tetrafluoroethene) segments. Polym Bull 32:403–410CrossRefGoogle Scholar
  4. 4.
    Decker C (2005) New developments in UV radiation curing of protective coatings. Surf Coat Int Part B Coat Trans 88(B1):9–17CrossRefGoogle Scholar
  5. 5.
    Moszner N, Klapdohr S (2004) Nanotechnology for dental composites. Int J Nanotechnol 1:130–156CrossRefGoogle Scholar
  6. 6.
    Kahraman MV, Bayramoglu G, Kayaman-Apohan N, Gungor A (2007) UV-curable methacrylated/fumaric acid modified epoxy as a potential support for enzyme immobilization. React Funct Polym 67:97–103CrossRefGoogle Scholar
  7. 7.
    Stansbury J (2000) Curing dental resins and composites by photopolymerization. J Esthet Dent 12:300–308CrossRefPubMedGoogle Scholar
  8. 8.
    Lu H, Stansbury JW, Bowman CN (2004) Towards the elucidation of shrinkage stress development and relaxation in dental composites. Dent Mater 20:979–986CrossRefPubMedGoogle Scholar
  9. 9.
    Decker C (1996) Photoinitiated crosslinking polymerization. Prog Polym Sci 21:593–650CrossRefGoogle Scholar
  10. 10.
    Hoyle CE, Lee TY, Roper T (2004) Thiol–enes: chemistry of the past with promise for the future. J Polym Sci A Polym Chem 42:5301–5338CrossRefGoogle Scholar
  11. 11.
    Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573CrossRefGoogle Scholar
  12. 12.
    Lowe AB (2014) Thiol-yne click/coupling chemistry and recent applications in polymer and materials synthesis and modifications. Polymer 55:5517–5549CrossRefGoogle Scholar
  13. 13.
    Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ (2009) Applications of orthogonal “Click” chemistries in the synthesis of functional soft materials. Chem Rev 109:5620–5686CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sumerlin BS, Vogt AP (2010) Macromolecular engineering through click chemistry and other efficient transformations. Macromolecules 43:1–13CrossRefGoogle Scholar
  15. 15.
    Lee TY, Carioscia J, Smith Z, Bowman CN (2007) Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties. Macromolecules 40:1473–1479CrossRefGoogle Scholar
  16. 16.
    Zhou J, Zhang Q, Chen S, Zhang H, Ma A, Ma M, Liu Q, Tan J (2013) Influence of thiol and ene functionalities on thiol-ene networks: photopolymerization, physical, mechanical, and optical properties. Polym Test 32:608–616CrossRefGoogle Scholar
  17. 17.
    Li Q, Zhou H, Hoyle CE (2009) The effect of thiol and ene structures on thiol-ene networks: photopolymerization, physical, mechanical and optical properties. Polymer 50:2237–2245CrossRefGoogle Scholar
  18. 18.
    Dos Santos MN, Opelt CV, LafrattaFH Lepienski CM, Pezzin SH, Coelho LAF (2011) Thermal and mechanical properties of a nanocomposite of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes. Mater Sci Eng A Struct 528:4318–4324CrossRefGoogle Scholar
  19. 19.
    Xing WY, Song L, Wang X, Lv XQ, Hu Y (2011) Preparation, combustion and thermal behavior of UV-cured epoxy-based coatings containing layered double hydroxide. Polym Adv Technol 22:1859–1864CrossRefGoogle Scholar
  20. 20.
    Xiao XY, Hao CC (2010) Preparation of waterborne epoxy acrylate/silica sol hybrid materials and study of their UV curing behavior. Colloids Surf A 359:82–87CrossRefGoogle Scholar
  21. 21.
    Lin HM, Wu SY, Chang FC, Yen YC (2011) Photopolymerization of photocurable resins containing polyhedral oligomeric silsesquioxane methacrylate. Mater Chem Phys 131:393–399CrossRefGoogle Scholar
  22. 22.
    Matějka L, Amici Kroutilová I, Lichtenhan JD, Haddad TS (2014) Structure ordering and reinforcement in POSS containing hybrids. Eur Polym J 52:117–126CrossRefGoogle Scholar
  23. 23.
    Zhang W, Müller AHE (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38:1121–1162CrossRefGoogle Scholar
  24. 24.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRefPubMedGoogle Scholar
  25. 25.
    Sulca NM, Lungu A, Garea SA, Iovu H (2009) Monitoring the synthesis of new polymer nanocomposites based on different polyhedral oligomeric silsesquioxanes using Raman spectroscopy. J Raman Spectrosc 40:1634–1640CrossRefGoogle Scholar
  26. 26.
    Lungu A, Sulca NM, Vasile E, Badea N, Parvu C, Iovu H (2011) The influence of POSS substituent on synthesis and properties of hybrid materials based on urethane dimethacrylate (UDMA) and various polyhedral oligomeric silsesquioxane (POSS). J Appl Polym Sci 121:2919–2926CrossRefGoogle Scholar
  27. 27.
    Constantin F, Garea SA, Iovu H (2013) The influence of organic substituents of polyhedral oligomeric silsesquioxane on the properties of epoxy-based nanomaterials. Compos B 44:558–564CrossRefGoogle Scholar
  28. 28.
    Balanuca B, Lungu A, Hanganu AM, Stan LR, Vasile E, Iovu H (2014) Hybrid nanocomposites based on POSS and networks of methacrylated camelina oil and various PEG derivatives. Eur J Lipid Sci Technol 116:458–469CrossRefGoogle Scholar
  29. 29.
    Florea NM, Lungu A, Badica P, Craciun L, Enculescu M, Ghita DG, Ionescu C, Zgirian RG, Iovu H (2015) Novel nanocomposites based on epoxy resin/epoxy-functionalized polydimethylsiloxane reinforced with POSS. Compos B 75:226–234CrossRefGoogle Scholar
  30. 30.
    Florea NM, Lungu A, Balanuca B, Badica P, Craciun L, Enculescu M, Ionescu C, Tihan G, Iovu H (2015) Effect of polyhedral oligomeric silsesquioxane nanoreinforcement on the properties of epoxy resin/monoglycidylether-terminated poly(dimethylsiloxane) nanocomposites. High Perform Polym.  https://doi.org/10.1177/0954008315595447 CrossRefGoogle Scholar
  31. 31.
    Lungu A, Florea NM, Iovu H (2012) Dimethacrylic/epoxy interpenetrating polymer networks including octafunctional POSS. Polymer 53:300–307CrossRefGoogle Scholar
  32. 32.
    Lungu A, Florea NM, Manea M, Vasile E, Iovu H (2016) Polyhedral oligomeric silsesquioxanes nanoreinforced methacrylate/epoxy hybrids. J Appl Polym Sci 133:1–14CrossRefGoogle Scholar
  33. 33.
    Boulden JE, Cramer NB, Schreck KM, Couch CL, Bracho-Troconis C, Stansbury JW, Bowman CN (2011) Thiol–ene–methacrylate composites as dental restorative materials. Dent Mater 27:267–272CrossRefPubMedGoogle Scholar
  34. 34.
    Podgórski M, Becka E, Claudino M, Flores A, Shah PK, Stansbury JW, Bowman CN (2015) Ester-free thiol–ene dental restoratives-part a: resin development. Dent Mater 31:1255–1262CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Podgórski M, Becka E, Claudino M, Flores A, Shah PK, Stansbury JW, Bowman CN (2015) Ester-free thiol–ene dental restoratives-part B: composite development. Dent Mater 31:1263–1270CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cramer NB, Couch CL, Schreck KM, Carioscia JA, Boulden JE, Stansbury JW, Bowman CN (2010) Investigation of thiol-ene and thiol-ene–methacrylate based resins as dental restorative materials. Dent Mater 26:21–28CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Carioscia JA, Schneidewind L, O’Brien C, Ely R, Feeser C, Cramer N, Bowman CN (2007) Thiol–norbornene materials: approaches to develop high T g thiol–ene polymers. J Polym Sci A Polym Chem 45:5686–5696CrossRefGoogle Scholar
  38. 38.
    Belbakra Z, Cherkaoui ZM, Allonas X (2014) Photocurable polythiol based (meth)acrylate resins stabilization: new powerful stabilizers and stabilization systems. Polym Degrad Stabil 110:298–307CrossRefGoogle Scholar
  39. 39.
    Carioscia JA, Stansbury JW, Bowman CN (2007) Evaluation and control of thiol-ene/thiol-epoxy hybrid networks. Polymer 48:1526–1532CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang X, Wang X, Song L, Xing W, Tang G, Hu W, Hu Y (2013) Preparation and thermal stability of UV-cured epoxy-based coatings modified with octamercaptopropyl POSS. Thermochim Acta 568:130–139CrossRefGoogle Scholar
  41. 41.
    Liu Y, Ni Y, Zheng S (2006) Polyurethane networks modified with octa(propylglycidylether) polyhedral oligomeric silsesquioxane. Macromol Chem Phys 207:1842–1851CrossRefGoogle Scholar
  42. 42.
    Cramer NB, Bowman CN (2001) Kinetics of thiol-ene and thiol–acrylate photopolymerizations with real-time Fourier transform infrared. J Polym Sci A Polym Chem 39:3311–3319CrossRefGoogle Scholar
  43. 43.
    Rueggeberg FA, Hashinger DT, Fairhurst CW (1990) Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent Mater 6(4):241–249CrossRefPubMedGoogle Scholar
  44. 44.
    Cramer NB, Couch CL, Schreck KM, Boulden JE, Wydra R, Stansbury JW, Bowman CN (2010) Properties of methacrylate–thiol–ene formulations as dental restorative materials. Dent Mater 26:799–806CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang Z, Liang G, Ren P, Wang J (2008) Curing behavior of epoxy/POSS/DDS hybrid systems. Polym Compos 29:77–83CrossRefGoogle Scholar
  46. 46.
    Beigi S, Yeganeh H, Atai M (2013) Evaluation of fracture toughness and mechanical properties of ternary thiol–ene–methacrylate systems as resin matrix for dental restorative composites. Dent Mater 29:777–787CrossRefPubMedGoogle Scholar
  47. 47.
    Raftopoulos KN, Pielichowski K (2016) Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog Polym Sci 52:136–187CrossRefGoogle Scholar
  48. 48.
    Feng Y, Jia Y, Guang S, Xu H (2010) Study on thermal enhancement mechanism of POSS- containing hybrid nanocomposites and relationship between thermal properties and their molecular structure. J Appl Polym Sci 115:2212–2220CrossRefGoogle Scholar
  49. 49.
    Huang JM, Huang HJ, Wang YX, Chen WY, Chang FC (2009) Preparation and characterization of epoxy/polyhedral oligomeric silsesquioxanes hybrid nanocomposites. J Polym Sci B Polym Phys 47:1927–1934CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Nicoleta M. Florea
    • 1
    • 2
  • Celina M. Damian
    • 1
  • Cristina Ionescu
    • 2
  • Adriana Lungu
    • 1
  • Eugeniu Vasile
    • 3
  • Horia Iovu
    • 1
    • 4
  1. 1.Advanced Polymer Materials GroupUniversity Politehnica of BucharestBucharestRomania
  2. 2.Horia Hulubei-National Institute for Physics and Nuclear Engineering (IFIN-HH)MagureleRomania
  3. 3.Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material ScienceUniversity Politehnica of BucharestBucharestRomania
  4. 4.Academy of Romanian ScientistsBucharestRomania

Personalised recommendations