Polymer Bulletin

, Volume 75, Issue 5, pp 1915–1930 | Cite as

Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties

  • Leonardo M. dos Santos
  • Rosane Ligabue
  • Angela Dumas
  • Christophe Le Roux
  • Pierre Micoud
  • Jean-François Meunier
  • François Martin
  • Marta Corvo
  • Pedro Almeida
  • Sandra EinloftEmail author
Original Paper


Nano-Fe3O4-synthetic talc gel was used as filler in the synthesis of waterborne polyurethane/Fe3O4-synthetic talc nanocomposites. This filler presents numerous edges (Si–O and Mg–O) and OH groups easily forming hydrogen bonds and polar interaction with water conferring hydrophilic character, consequently improving filler dispersion within a water-based matrix. Yet, the use of waterborne polyurethane (WPU) as matrix must be highlighted due to its environmentally friendly characteristics and low toxicity compared to solvent-based product. Fe3O4-synthetic talc-nanofillers were well dispersed into the polyurethane matrix even at high filler content as supported by XRD and TEM analyses. NMR indicates the interaction of filler OH groups with the matrix. For all nanocomposites, one can see a typical ferromagnetic behavior below Curie temperature (about 120 K) and a superparamagnetic behavior above this temperature. The use of Fe3O4-synthetic talc for obtaining magnetic nanocomposites resulted in improved materials with superior mechanical properties compared to solvent-based nanocomposites.


Waterborne polyurethane Nanocomposites Synthetic Fe3O4-talc Physical mixture 



LS (No Proc.: BEX 6547/15-0) thanks CAPES, SE, and RL acknowledge CNPq for DT grant. We acknowledge LabNMR-CENIMAT at FCT-UNL and RNRMN for access to the facilities. RNRMN is supported with funds from the Foundation for Science and Technology. This work is also funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT-Portuguese Foundation for Science and Technology under the Project Number POCI-01-0145-FEDER-007688, Reference UID/CTM/50025.

Supplementary material

289_2017_2133_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1772 kb)


  1. 1.
    Kirchberg S, Rudolph M, Ziegmann G, Peuker UA (2012) Nanocomposites based on technical polymers and sterically functionalized soft magnetic magnetite nanoparticles: synthesis, processing, and characterization. J Nanomater 2012:1–8CrossRefGoogle Scholar
  2. 2.
    Mohammadi A, Barikani M, Lakouraj MM (2016) Biocompatible polyurethane/thiacalix[4]arenes functionalized Fe3O4 magnetic nanocomposites: synthesis and properties. Mater Sci Eng C Mater Biol Appl 66:106–118CrossRefGoogle Scholar
  3. 3.
    Yan F, Li J, Zhang J, Liu F, Yang W (2009) Preparation of Fe3O4/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J Nanopart Res 11:289–296CrossRefGoogle Scholar
  4. 4.
    Balakrishnan S, Bonder MJ, Hadjipanayis GC (2009) Particle size effect on phase and magnetic properties of polymer-coated magnetic nanoparticles. J Magn Magn Mater 321:117–122CrossRefGoogle Scholar
  5. 5.
    Giri SK, Pradhan GC, Das N (2014) Thermal, electrical and tensile properties of synthesized magnetite/polyurethane nanocomposites using magnetite nanoparticles derived from waste iron ore tailing. J Polym Res 21:446CrossRefGoogle Scholar
  6. 6.
    Dallas P, Georgakilas V, Niarchos D, Komninou P, Kehagias T, Petridis D (2006) Synthesis, characterization and thermal properties of polymer/magnetite nanocomposites. Nanotechnology 17:2046–2053CrossRefGoogle Scholar
  7. 7.
    Dumas A, Gardes E, Le Roux C, Martin F, Micoud P (2013) Process for preparing a magnetic talcous composition and magnetic talcous composition. PCT Int. Pat. Appl. WO 2013093376 A1 June 27 2013 Fr. Pat. Appl. FR 2984872 A1 June 28 2013Google Scholar
  8. 8.
    Dumas A, Le Roux C, Martin F, Micoud P (2013) Process for preparing a composition comprising synthetic mineral particles and composition. PCT Int. Pat. Appl. WO 2013004979 A1 Jan 10 2013 Fr. Pat. FR 2977580 B1 August 16 2013Google Scholar
  9. 9.
    dos Santos LM, Ligabue R, Dumas A, Le Roux C, Micoud P, Meunier J-F, Martin F, Einloft S (2015) New magnetic nanocomposites: polyurethane/Fe3O4-synthetic talc. Eur Polym J 69:38–49CrossRefGoogle Scholar
  10. 10.
    Dias G, Prado MA, Carone C, Ligabue R, Dumas A, Martin F, Le Roux C, Micoud P, Einloft S (2015) Synthetic silico-metallic mineral particles (SSMMP) as nanofillers: comparing the effect of different hydrothermal treatments on the PU/SSMMP nanocomposites properties. Polym Bull 7:2991–3006CrossRefGoogle Scholar
  11. 11.
    Dias G, Prado MA, Carone C, Ligabue R, Dumas A, Martin F, Le Roux C, Micoud P, Einloft S (2016) Comparing different synthetic talc as fillers for polyurethane nanocomposites. Macromol Symp 367:136–142CrossRefGoogle Scholar
  12. 12.
    Prado MA, Dias G, Carone C, Ligabue R, Dumas A, Martin F, Le Roux C, Micoud P, Einloft S (2015) Synthetic Ni-talc as filler for producing polyurethane nanocomposites. J Appl Polym Sci 132:41854CrossRefGoogle Scholar
  13. 13.
    Yousfi M, Livi S, Dumas A, Le Roux C, Crépin-Leblond J, Greenhill-Hooper M, Duchet-Rumeau J (2013) Use of new synthetic talc as reinforcing nanofillers for polypropylene and polyamide 6 systems: thermal and mechanical properties. J Colloid Interf Sci 403:29–42CrossRefGoogle Scholar
  14. 14.
    Yousfi M, Livi S, Dumas A, Crépin-Leblond J, Greenhill-Hooper M, Duchet-Rumeau J (2014) Compatibilization of polypropylene/polyamide 6 blends using new synthetic nanosized talc fillers: morphology, thermal and mechanical properties. J Appl Polym Sci 131:40453Google Scholar
  15. 15.
    Dumas A, Claverie M, Slostowski C, Aubert G, Careme C, Le Roux C, Micoud P, Martin F, Aymonier C (2016) Fast-geomimicking using chemistry in supercritical water. Angew Chem 128:1–5CrossRefGoogle Scholar
  16. 16.
    Wang G, Ma G, Hou CA, Guan T, Ling L, Wang B (2014) Preparation and properties of waterborne polyurethane/nanosilica composites: a diol as extender with triethoxysilane group. J Appl Polym Sci 131(15):1–7Google Scholar
  17. 17.
    Chen S, Chen S, Zhao G, Chen J (2015) Fabrication and properties of novel superparamagnetic, well-dispersed waterborne polyurethane/Ni-Zn ferrite nanocomposites. Comp Sci Tech 119:108–114CrossRefGoogle Scholar
  18. 18.
    Zhang S, Li Y, Peng L, Li Q, Chen S, Hou K (2013) Synthesis and characterization of novel waterborne polyurethane nanocomposites with magnetic and electrical properties. Compos Part A 55:94–101CrossRefGoogle Scholar
  19. 19.
    Soares RR, Carone C, Einloft S, Ligabue R, Monteiro WF (2014) Synthesis and characterization of waterborne polyurethane/ZnO composites. Polym Bull 71:829–838CrossRefGoogle Scholar
  20. 20.
    Dumas A, Martin F, Le Roux C, Micoud P, Petit S, Ferrage E, Brendlé J, Grauby O, Greenhill-Hooper M (2013) Phyllosilicates synthesis: a way of accessing edges contributions in NMR and FTIR spectroscopies. Example of synthetic talc. Phys Chem Miner 40:361–373CrossRefGoogle Scholar
  21. 21.
    Tang E, Cheng G, Ma X (2006) Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technol 161:209–214CrossRefGoogle Scholar
  22. 22.
    Da Silva V, Dos Santos LM, Subda S, Ligabue R, Seferin M, Carone C, Einloft S (2013) Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym Bull 70:1819–1833CrossRefGoogle Scholar
  23. 23.
    Lippmaa E, Magi M, Samoson A, Tarmac M, Engelhardt G (1980) Structural studies of silicates by solid-state high-resolution 29Si NMR. J Am Chem Soc 102:4889–4893CrossRefGoogle Scholar
  24. 24.
    Wang T-L, Ou C-C, Yang C-H (2008) Synthesis and properties of organic/inorganic hybrid nanoparticles prepared using atom transfer radical polymerization. J Appl Polym Sci 109:3421–3430CrossRefGoogle Scholar
  25. 25.
    Sardon H, Irusta L, Santamaría P, Fernández-Berridi MJ (2012) Thermal and mechanical behaviour of self-curable waterborne hybrid polyurethanes functionalized with (3-aminopropyl)triethoxysilane (APTES). J Polym Res 19:545–546CrossRefGoogle Scholar
  26. 26.
    Jena KK, Sahoo S, Narayan R, Aminabhavi TM, Raju KVSN (2011) Novel hyperbranched waterborne polyurethane-urea/silica hybrid coatings and their characterizations. Polym Int 60:1504–1513CrossRefGoogle Scholar
  27. 27.
    Chesnel K, Trevino M, Cai Y, Hancock JM, Smith SJ, Harrison RG (2014) Particle size effects on the magnetic behaviour of 5 to 11 nm Fe3O4 nanoparticles coated with oleic acid. J Phys Conf Ser 521:012004CrossRefGoogle Scholar
  28. 28.
    Mohapatra J, Nigam S, Gupta J, Mitra A, Aslam M, Bahadur D (2015) Enhancement of magnetic heating efficiency in size controlled MFe2O4 (M=Mn, Fe, Co and Ni) nanoassemblies. RSC Adv 5:14311–14321CrossRefGoogle Scholar
  29. 29.
    Lei L, Xia Z, Zhang L, Zhang Y, Zhong L (2016) Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions. Prog Org Coat 97:19–27CrossRefGoogle Scholar
  30. 30.
    Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65:222–228CrossRefGoogle Scholar
  31. 31.
    Lorandi NP, Ornaghi MOHCH Jr (2016) Dynamic mechanical analysis (DMA) of polymeric composite materials. Sci Cum Ind 4:48–60CrossRefGoogle Scholar
  32. 32.
    Serkis M, Špírková M, Hodan J, Kredatusová J (2016) Nanocomposites made from thermoplastic waterborne polyurethane and colloidal silica. The influence of nanosilica type and amount on the functional properties. Prog Org Coat 101:342–349CrossRefGoogle Scholar
  33. 33.
    Gu X, Chen G, Zhao M, Watson SS, Nguyen T, Chin JW, Martin JW (2012) Critical role of particle/polymer interface in photostability of nano-filled polymeric coatings. J Coat Technol Res 9:251–267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Leonardo M. dos Santos
    • 1
  • Rosane Ligabue
    • 1
    • 2
  • Angela Dumas
    • 3
  • Christophe Le Roux
    • 3
  • Pierre Micoud
    • 3
  • Jean-François Meunier
    • 4
  • François Martin
    • 3
  • Marta Corvo
    • 5
  • Pedro Almeida
    • 5
    • 6
  • Sandra Einloft
    • 1
    • 2
    Email author return OK on get
  1. 1.Post-Graduation Program in Materials Engineering and TechnologyPontifical Catholic University of Rio Grande do Sul-PUCRSPorto AlegreBrazil
  2. 2.School of ChemistryPontifical Catholic University of Rio Grande do Sul-PUCRSPorto AlegreBrazil
  3. 3.ERT 1074 Géomatériaux-GET UMR 5563 CNRS-Université de ToulouseToulouseFrance
  4. 4.Laboratoire de Chimie de CoordinationUniversité de ToulouseToulouseFrance
  5. 5.CENIMAT/I3N, Universidade Nova de LisboaCaparicaPortugal
  6. 6.Área Departamental de Física, Instituto Superior de Engenharia de LisboaInstituto Politécnico de LisboaLisbonPortugal

Personalised recommendations