Polymer Bulletin

, Volume 75, Issue 4, pp 1431–1439 | Cite as

Mechanical properties of graphene oxide–polyacrylamide composites before and after swelling in water

  • Gülşen Akın Evingür
  • Önder Pekcan
Original Paper


Polyacrylamide (PAAm) hydrogels have been proposed for use as promising biomaterials in biomedical and tissue engineering but their poor mechanical and water-retention properties have hindered their development. Graphene oxide (GO), an excellent nanofiller, was added to PAAm to produce mechanically strong GO–PAAm composites. The free radical crosslinking copolymerization method was used with GO content varying in the range between 5 and 50 µl of GO. The mechanical properties of the GO–PAAm composites are measured by compressive test, revealing a decrease in the shear modulus and toughness of the composites above 8 µl of GO by increasing GO content.


Graphene oxide Elasticity Toughness Swelling Acrylamide 


  1. 1.
    Haraguchi K, Li HJ (2006) Mechanical properties and structure of polymer clay nanocomposite with high clay content. Macromolecules 39:1898–1905CrossRefGoogle Scholar
  2. 2.
    Evingür GA, Pekcan Ö (2014) Effect of multiwalled carbon nanotube (MWNT) on the behavior of swelling of polyacrylamide–MWNT composites. J Reinf Plast Compos 33(13):1199–1206CrossRefGoogle Scholar
  3. 3.
    Das S, Irin F, Ma L, Bhattacharia SK, Hedden RC, Green MJ (2013) Rheology and morphology of pristine graphene/polyacrylamide gels. ACS Appl Mater Interfaces 5:8633–8640CrossRefGoogle Scholar
  4. 4.
    Matzelle TR, Geuskens G, Kruse N (2003) Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy. Macromolecules 36:2926–2931CrossRefGoogle Scholar
  5. 5.
    Baselga J, Hernandez- Fuentes I, Pierola MA, Llorente F (1987) Elastic properties of highly cross-linked polyacrylamide gels. Macromolecules 20:3060–3065CrossRefGoogle Scholar
  6. 6.
    Kaur H, Chatterji PR (1990) Interpenetrating hydrogel networks. 2. Swelling and mechanical properties of the gelatin–polyacrylamide interpenetrating networks. Macromolecules 23:4868–4871CrossRefGoogle Scholar
  7. 7.
    Valles E, Durando D, Katime I, Mendizabal E, Puig JE (2000) Equilibrium swelling and mechanical properties of hydrogels of acrylamide and itaconic acid or its esters. Polym Bull 44:109–114CrossRefGoogle Scholar
  8. 8.
    Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q (2012) Preparation and swelling properties of graphene oxide/poly(acrylicacid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf A 401:97–106CrossRefGoogle Scholar
  9. 9.
    Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Lui Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 2:10399–10406CrossRefGoogle Scholar
  10. 10.
    Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos A 43:1476–1481CrossRefGoogle Scholar
  11. 11.
    Ren L, Liu T, Guo J, Guo S, Wang X, Wang W (2010) A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction. Nanotechnology 21:335701 (IOP Publishing) CrossRefGoogle Scholar
  12. 12.
    Liu R, Liang S, Tang XZ, Yan D, Li X, Yu ZZ (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160–14167CrossRefGoogle Scholar
  13. 13.
    Wang J, Liu C, Shuai Y, Cui X, Nie L (2014) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf B 113:223–229CrossRefGoogle Scholar
  14. 14.
    Liu J, Song G, He C, Wang H (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34:1002–1007CrossRefGoogle Scholar
  15. 15.
    Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem 1:7433–7443CrossRefGoogle Scholar
  16. 16.
    Evingur GA, Pekcan Ö (2012) Elastic percolation of swollen polyacrylamide (PAAm)–multiwall carbon nanotubes composite. Phase Transit 85:553–564CrossRefGoogle Scholar
  17. 17.
    Evingur GA, Pekcan Ö (2015) Kinetics models for the dynamical behaviors of PAAm–κ-carrageenan composite gels. J Biol Phys 41:37–47CrossRefGoogle Scholar
  18. 18.
    Evingur GA, Pekcan Ö (2013) Superelastic percolation network of polyacrylamide (PAAm)–kappa carrageenan (kC) composite. Cellulose 20:1145–1151CrossRefGoogle Scholar
  19. 19.
    Evingur GA, Pekcan Ö (2012) Temperature effect on elasticity of swollen composite formed from polyacrylamide (PAAm)–multiwall carbon nanotubes (MWNTs). Engineering 4:619–624CrossRefGoogle Scholar
  20. 20.
    Evingur GA, Pekcan Ö (2014) Elastic properties of a swollen PAAm–NIPA composite with various NIPA contents. Polym Plast Technol Eng 53(8):834–839CrossRefGoogle Scholar
  21. 21.
    Anseth KS, Bowman CN, Peppas LB (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657CrossRefGoogle Scholar
  22. 22.
    Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Faculty of EngineeringPiri Reis UniversityIstanbulTurkey
  2. 2.Faculty of Engineering and Natural SciencesKadir Has UniversityIstanbulTurkey

Personalised recommendations