Advertisement

Polymer Bulletin

, Volume 75, Issue 4, pp 1387–1401 | Cite as

Temperature-responsive N-isopropylacrylamide-grafted natural rubber

  • Pattaraporn Nuntahirun
  • Oraphin Yamamoto
  • Peerasak Paoprasert
Original Paper
  • 144 Downloads

Abstract

Temperature-responsive polymers are smart materials that respond to changes in temperature and have a wide range of applications, ranging from sensing to biomedical fields. In this work, we investigated the synthesis and temperature-responsive behavior of responsive elastomer based on N-isopropylacrylamide-grafted natural rubber. The grafting reaction was carried out using deproteinized natural rubber (DPNR) latex and potassium persulfate as free radical initiator. The temperature responsiveness of the graft copolymers was investigated using water swelling and contact angle measurements, and compared with that of pure DPNR. The lower critical solution temperature of the graft copolymer was found to be in the range 30–34 °C, whereas the DPNR was not responsive to temperature. Furthermore, the graft copolymer exhibited temperature responsiveness in a solid state. As the temperature responsiveness of the graft copolymer is close to the human body temperature, it can be used in biomedical applications. Dye adsorption studies revealed the Langmuir isotherm, indicating monolayer coverage. The technique proposed in this study produces a temperature-responsive natural rubber, with potential applications as a responsive material for use in sensing and biomedical products.

Keywords

Temperature responsive N-isopropylacrylamide Deproteinization Natural rubber Graft copolymer 

Notes

Acknowledgements

This work is financially supported by the Thailand Research Fund (TRF) and the Faculty of Science and Technology, Thammasat University (TRG5880199) and the Thailand Graduate Institute of Science and Technology (TGIST: SCA-CO-2558-996-TH). The authors acknowledge the Central Scientific Instrument Center (CSIC), Department of Chemistry, Faculty of Science and Technology, and Thammasat University.

References

  1. 1.
    Almeida H, Amaral MH, Lobão P (2012) Temperature and pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery. J Appl Pharm Sci 02:01–10Google Scholar
  2. 2.
    Chen J-K, Chang C-J (2014) Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: a review. Materials 7:805–875CrossRefGoogle Scholar
  3. 3.
    Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215CrossRefGoogle Scholar
  4. 4.
    Mark B, Overberger CG, Menges G (1986) Encyclopedia of polymer science and engineering. Wiley 6:492Google Scholar
  5. 5.
    Chee C-K, Rimmer S, Soutar I, Swanson L (2006) Synthesis and conformational behaviour of luminescently labelled poly[styrene-graft-(N-isopropyl acrylamide)] copolymers. Polym Int 55:740–748CrossRefGoogle Scholar
  6. 6.
    Abdulkadir A, Hazer B (2008) Poly(N-isopropylacrylamide) thermoresponsive cross-linked conjugates containing polymeric soybean oil and/or polypropylene glycol. Eur Polym J 44:1701–1713CrossRefGoogle Scholar
  7. 7.
    Zhang J, Chu LY, Cheng CJ, Mi DF, Zhou MY, Ju XJ (2008) Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo- and pH-responsive properties. Polymer 49:2595–2603CrossRefGoogle Scholar
  8. 8.
    Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287:627–643CrossRefGoogle Scholar
  9. 9.
    Yi G, Huang Y, Xiong F, Liao B, Yang J, Chen X (2011) Preparation and swelling behaviors of rapid responsive semi-IPN NaCMC/PNIPAm hydrogels. J Wuhan Univ Technol Mater Sci Ed 26:1073–1078CrossRefGoogle Scholar
  10. 10.
    Abdullah Al N, Lee KS, Mosaiab T, Park SY (2013) pH and thermo-responsive poly(N-isopropylacrylamide) copolymer grafted to poly(ethylene glycol). J Appl Polym Sci 130:168–174CrossRefGoogle Scholar
  11. 11.
    Ifuku S, Miwa T, Morimoto M, Saimoto H (2013) Thermoresponsive chitosan/N-isopropylacrylamide copolymer through atom transfer radical polymerization. Int J Biol Macromol 52:14–19CrossRefGoogle Scholar
  12. 12.
    Kang H, Liu R, Huang Y (2013) Synthesis of ethyl cellulose grafted poly (n-isopropylacrylamide) copolymer and its micellization. Acta Chim Sin 71:114–120CrossRefGoogle Scholar
  13. 13.
    Wang Y, Qin J, Wei Y, Li C, Ma G (2013) Preparation strategies of thermo-sensitive P(NIPAM-co-AA) microspheres with narrow size distribution. Powder Technol 236:107–113CrossRefGoogle Scholar
  14. 14.
    Hermann A, Mruk R, Roskamp RF, Scherer M, Ma L, Zentel R (2014) Poly(N -isopropylacrylamide)-modified styrene-butadiene rubber as thermoresponsive material. Macromol Chem Phys 215:32–43CrossRefGoogle Scholar
  15. 15.
    Jin S, Liu M, Chen S, Gao C (2008) Synthesis, characterization and the rapid response property of the temperature responsive PVP-g-PNIPAM hydrogel. Eur Polym J 44:2162–2170CrossRefGoogle Scholar
  16. 16.
    Qin S, Geng Y, Discher DE, Yang S (2006) Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block- poly(N-isopropylacrylamide). Adv Mater 18:2905–2909CrossRefGoogle Scholar
  17. 17.
    Hodorog ADR, Ibanescu C, Danu M, Simionescu BC, Rocha L, Hurduc N (2012) Thermo-sensitive polymers based on graft polysiloxanes. Polym Bull 69:579–595CrossRefGoogle Scholar
  18. 18.
    Graves DF (2007) Rubber. In: Kent JA (ed) Handbook of industrial chemistry and biotechnology. Springer, New York, pp 689–718Google Scholar
  19. 19.
    Gamlin C, Markovic MG, Dutta NK, Choudhury NR, Matisons JG (2000) Structural effects on the decomposition kinetics of EPDM elastomers by high-resolution TGA and modulated TGA. J Therm Anal Calorim 59:319–336CrossRefGoogle Scholar
  20. 20.
    Kangwansupamonkon W, Gilbert RG, Kiatkamjornwong S (2005) Modification of natural rubber by grafting with hydrophilic vinyl monomers. Macromol Chem Phys 206:2450–2460CrossRefGoogle Scholar
  21. 21.
    Oliveira PC, Guimaraes A, Cavaille JY, Chazeau L, Gilbert RG (2005) Poly(dimethylaminoethyl methacrylate) grafted natural rubber from seeded emulsion polymerization. Polymer 46:1101–1105CrossRefGoogle Scholar
  22. 22.
    Juntuek P, Ruksakulpiwat C, Chumsamrong P, Ruksakulpiwat Y (2011) Glycidyl methacrylate grafted natural rubber: synthesis, characterization, and mechanical property. J Appl Polym Sci 122:3152–3159CrossRefGoogle Scholar
  23. 23.
    Satraphan P, Intasiri A, Tangpasuthadol V, Kiatkamjornwong S (2009) Effects of methyl methacrylate grafting and in situ silica particle formation on the morphology and mechanical properties of natural rubber composite films. Polym Adv Technol 20:473–486CrossRefGoogle Scholar
  24. 24.
    Kochthongrasamee T, Prasassarakich P, Kiatkamjornwong S (2006) Effects of redox initiator on graft copolymerization of methyl methacrylate onto natural rubber. J Appl Polym Sci 101:2587–2601CrossRefGoogle Scholar
  25. 25.
    Zhang S, Cao L, Shao F, Chen L, Jiao J, Gao W (2008) Grafting of methyl methacrylate onto natural rubber in supercritical carbon dioxide. Polym Adv Technol 19:54–59CrossRefGoogle Scholar
  26. 26.
    Suksawad P, Yamamoto Y, Kawahara S (2011) Preparation of thermoplastic elastomer from natural rubber grafted with polystyrene. Eur Polym J 47:330–337CrossRefGoogle Scholar
  27. 27.
    Arayapranee W, Rempel GL (2008) Morphology and mechanical properties of natural rubber and styrene-grafted natural rubber latex compounds. J Appl Polym Sci 109:1395–1402CrossRefGoogle Scholar
  28. 28.
    Pukkate N, Kitai T, Yamamoto Y, Kawazura T, Sakdapipanich J, Kawahara S (2007) Nano-matrix structure formed by graft-copolymerization of styrene onto natural rubber. Eur Polym J 43:3208–3214CrossRefGoogle Scholar
  29. 29.
    Promdum Y, Klinpituksa P, Ruamcharoen J (2009) Grafting copolymerization of natural rubber with 2-hydroxyethyl methacrylate for plywood adhesion improvement. Songklanakarin J Sci Technol 31:453–457Google Scholar
  30. 30.
    Amnuaypanich S, Ratpolsan P (2009) Pervaporation membranes from natural rubber latex grafted with poly(2-hydroxyethyl methacrylate) (NR-g-PHEMA) for the separation of water-acetone mixtures. J Appl Polym Sci 113:3313–3321CrossRefGoogle Scholar
  31. 31.
    Wongthep W, Srituileong S, Martwiset S, Amnuaypanich S (2013) Grafting of poly(vinyl alcohol) on natural rubber latex particles. J Appl Polym Sci 127:104–110CrossRefGoogle Scholar
  32. 32.
    Wongthong P, Nakason C, Pan Q, Rempel GL, Kiatkamjornwong S (2012) Grafting of maleic anhydride onto deproteinized natural rubber via differential microemulsion polymerization. Adv Trends Eng Mater Appl 183–190Google Scholar
  33. 33.
    Nakason C, Kaesaman A, Supasanthitikul P (2004) The grafting of maleic anhydride onto natural rubber. Polym Test 23:35–41CrossRefGoogle Scholar
  34. 34.
    Nakason C, Kaesaman A, Yimwan N (2003) Preparation of graft copolymers from deproteinized and high ammonia concentrated natural rubber latices with methyl methacrylate. J Appl Polym Sci 87:68–75CrossRefGoogle Scholar
  35. 35.
    Oshio A, Kitai T, Kawahara S, Kuroda H (2006) Investigation of high graft-copolymerization of styrene onto natural rubber. In: Polymer preprints, vol 55. Japan, p 3606Google Scholar
  36. 36.
    Pukkate N, Yamamoto Y, Kawahara S (2008) Mechanism of graft copolymerization of styrene onto deproteinized natural rubber. Colloid Polym Sci 286:411–416CrossRefGoogle Scholar
  37. 37.
    Wongthong P, Nakason C, Pan Q, Rempel GL, Kiatkamjornwong S (2013) Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. Eur Polym J 49:4035–4046CrossRefGoogle Scholar
  38. 38.
    Kookarinrat C, Paoprasert P (2015) Versatile one-pot synthesis of grafted-hydrogenated natural rubber. Iran Polym J 24:123–133CrossRefGoogle Scholar
  39. 39.
    Nuntahirun P, Yamamoto O, Paoprasert P (2016) Preparation and temperature-responsive behavior of crosslinked polymers between poly(N-isopropylacrylamide) and natural rubber. Macrol Res 24:816–823CrossRefGoogle Scholar
  40. 40.
    Fukuhara L, Miyano K, Yamamoto Y, Ishii H, Kawahara S (2015) Preparation of purified natural rubber by removal of proteins. Kobunshi Ronbunshu 72:1–6CrossRefGoogle Scholar
  41. 41.
    Kawahara S, Klinklai W, Kuroda H, Isono Y (2004) Removal of proteins from natural rubber with urea. Polym Adv Technol 15:181–184CrossRefGoogle Scholar
  42. 42.
    Halimatuddahliana IH, Akil HM (2005) The effect of dicumyl peroxide vulcanization on the properties and morphology of polypropylene/ethylene–propylene diene terpolymer/natural rubber blends. Int J Polym Mater 54:1169CrossRefGoogle Scholar
  43. 43.
    Liu H, Chuai C, Iqbal M, Wang H, Kalsoom BB, Khattak M, Khattak MQ (2011) Improving foam ability of polypropylene by crosslinking. J Appl Polym Sci 122:973–980CrossRefGoogle Scholar
  44. 44.
    Tamboli SM, Mhaske ST, Kale DD (2011) Improving foam ability of polypropylene by crosslinking. J Appl Polym Sci 122:973–980CrossRefGoogle Scholar
  45. 45.
    Manaila E, Stelescu MD, Craciun G, Surdu L (2014) Effects of benzoyl peroxide on some properties of composites based on hemp and natural rubber. Polym Bull 71:2001–2022CrossRefGoogle Scholar
  46. 46.
    Li D, Zhang X, Yao J, Simon GP, Wang H (2011) Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chem Commun 47:1710–1712CrossRefGoogle Scholar
  47. 47.
    Park YI, Zhang B, Kuo C-Y, Martinez JS, Park J, Mallapragada S, Wang H-L (2013) Stimuli-responsive poly-N-isopropylacrylamide: phenylene vinylene oligomer conjugate. J Phys Chem C 117:7757–7763CrossRefGoogle Scholar
  48. 48.
    Seddiki N, Aliouche D (2013) Synthesis, rheological behavior and swelling properties of copolymer hydrogels based on poly(N-isopropylacrylamide) with hydrophilic monomers. Bull Chem Soc Ethiop 27:447Google Scholar
  49. 49.
    Chanroj T, Paoprasert P (2016) Chlorohydrination of natural rubber latex using sodium hypochlorite for fuel-resistant properties. Rubber Chem Technol 89:251–261CrossRefGoogle Scholar
  50. 50.
    Xia X, Hu Z (2004) Synthesis and light scattering study of microgels with interpenetrating polymer networks. Langmuir 20:2094–2098CrossRefGoogle Scholar
  51. 51.
    Cai Y, Shen W, Loo SL, Krantz WB, Wang R, Fane AG, Hua X (2013) Towards temperature driven forward osmosis desalination using Semi-IPN hydrogels as reversible draw agents. Water Res 47:3773–3781CrossRefGoogle Scholar
  52. 52.
    Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly (NIPAm) and cellulose nanowhiskers. Carbohydr Polym 102:159–166CrossRefGoogle Scholar
  53. 53.
    Zadrazil A, Stepánek F (2010) Investigation of thermo-responsive optical properties of a composite hydrogel. Colloid Surf A 372:115–119CrossRefGoogle Scholar
  54. 54.
    Chen X (2015) Modeling of experimental adsorption isotherm data. Information 4:14–22Google Scholar
  55. 55.
    Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45CrossRefGoogle Scholar
  56. 56.
    Itodo AU, Itodo HU (2010) Sorption energies estimation using Dubinin–Radushkevich and Temkin adsorption isotherms. Life Sci J 7:31–39Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Pattaraporn Nuntahirun
    • 1
  • Oraphin Yamamoto
    • 2
  • Peerasak Paoprasert
    • 1
  1. 1.Department of Chemistry, Faculty of Science and TechnologyThammasat UniversityPathumthaniThailand
  2. 2.National Metal and Materials Technology CenterPathumthaniThailand

Personalised recommendations