Advertisement

Polymer Bulletin

, Volume 75, Issue 2, pp 669–684 | Cite as

Electro-polymerization of pyrrole on graphite electrode: enhancement of electron transfer in bioanode of microbial fuel cell

  • Mekhaissia Ouis
  • Mostefa Kameche
  • Christophe Innocent
  • Mustapha Charef
  • Hakima Kebaili
Original Paper

Abstract

The enhancement of the power output of a microbial fuel cell (MFC) relays on two important issues: the immobilization of the catalyst microbial film on the bioanode where oxidation occurs and the electron transfer between them. In the present work, a graphite rod was used as anode and modified by electro-polymerisation using the conducting polymer (pyrrole). It was resulted in an improvement of the electronic conduction, and therefore an increase of the power density of the cell (i.e., from 7 to 25 mW/m2). The electroactive biofilm was produced from compost leachate garden which was deposited naturally on the anode without prior polarization. The efficiency of this modification was investigated with the aim to determine the supply of pyrrole in term of electricity generation. The results show enormous power density supply of the MFC using bioanode modified with pyrrole. Besides, since the energy produced by a MFC is too small, it would be interesting to recover the maximum of it by selecting the appropriate materials which fulfill the two criteria: better electron transfer and longer bacteria life.

Keywords

Microbial fuel cell Leachate garden soil Bioanode Conducting polymer 

Notes

Acknowledgements

The authors acknowledge financial support from the cooperation program between Algeria and France ‘Tassili 14 MDU912’. They also kindly thank Dr. T. Sahraoui for technical assistance for four-probe conductivity measurement and XRD spectrum in laboratory LMESM at USTO.

References

  1. 1.
    Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518. doi: 10.1016/j.tim.2006.10.003 CrossRefGoogle Scholar
  2. 2.
    Godwin J, Evitts R, Kennell G (2012) Microbial fuel cell with a polypyrrole/poly (methylene blue) composite electrode. Rep Electrochem 2:3–11. doi: 10.2147/RIE.S33526 Google Scholar
  3. 3.
    He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Ectroanalysisle 18:2009–2015. doi: 10.1002/elan.200603628 CrossRefGoogle Scholar
  4. 4.
    Zhou M, Yang J, Wang H, Tao J, Jin T et al (2013) Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials. Environ Technol 34:1915–1928. doi: 10.1080/09593330.2013.813951 CrossRefGoogle Scholar
  5. 5.
    Gong XB, You SJ, Wang XH, Zhang JN, Gan Y, Ren NQ (2014) A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction, biosonors in a microbial fuel cell. Biosens Bioelectron 55:237–241CrossRefGoogle Scholar
  6. 6.
    Varanasi JL, Nayak AK, Sohn Y, Pradhan D, Das D (2016) Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts. Electrochim Acta 199:154–163. doi: 10.1016/j.electacta.2016.03.152 CrossRefGoogle Scholar
  7. 7.
    Xie X, Criddle C, Cui Y (2015) Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ Sci 8:3418–3441. doi: 10.1039/C5EE01862E CrossRefGoogle Scholar
  8. 8.
    Cheng S, Liu H, Logan BE (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494. doi: 10.1016/j.elecom.2006.01.010 CrossRefGoogle Scholar
  9. 9.
    Liu Y, Wang M, Zhao F, Xu Z, Dong S (2005) The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron 21:984–988. doi: 10.1016/j.bios.2005.03.003 CrossRefGoogle Scholar
  10. 10.
    Lee S, Choi B, Tsutsumi A (2009) Electrochemical properties of polyaniline/carboxydextran (PANI/carDEX) composite films for biofuel cells in neutral aqueous solutions. Biotechnol Lett 31:851–855. doi: 10.1007/s10529-009-9944-1 CrossRefGoogle Scholar
  11. 11.
    Cao L, Gong C, Yang J (2016) Conducting tetraaniline derivatives with fast switching time, enhanced contrast and coloration efficiency. Electrochim Acta 192:422–430. doi: 10.1016/j.electacta.2016.02.016 CrossRefGoogle Scholar
  12. 12.
    Reddy KR, Karthik KV, Prasad SB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174CrossRefGoogle Scholar
  13. 13.
    Reddy KR, Lee KP, Gopalan AI (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7(9):3117–3125CrossRefGoogle Scholar
  14. 14.
    Reddy KR, Sin BS, Ryu KS, Kim JC, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles was elaborated for seeking electrical properties. Synth Met 159:595–603. doi: 10.1016/j.synthmet.2008.11.030 CrossRefGoogle Scholar
  15. 15.
    Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750. doi: 10.1002/app.25938 CrossRefGoogle Scholar
  16. 16.
    Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A Gen 489:1–16. doi: 10.1016/j.apcata.2014.10.001 CrossRefGoogle Scholar
  17. 17.
    Reddy KR, Lee KP, Gopalan AI (2007) Novel electrically conductive and ferromagnetic composites of poly (aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J Appl Polym Sci 106:1181–1191. doi: 10.1002/app.26601 CrossRefGoogle Scholar
  18. 18.
    Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8. doi: 10.1016/j.compscitech.2014.04.007 CrossRefGoogle Scholar
  19. 19.
    Reddy KR, Lee KP, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62:1815–1818. doi: 10.1016/j.matlet.2007.10.025 CrossRefGoogle Scholar
  20. 20.
    Dong RS, Anjanapura VR, Reddy KR, Jeong HM (2016) Compatibility of thermally reduced graphene with polyesters. J Macromol Sci Part B Phys 55:1099–1110. doi: 10.1080/00222348.2016.1242529 CrossRefGoogle Scholar
  21. 21.
    Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Polym Chem Part A 48:1477–1484. doi: 10.1002/pola.23883 CrossRefGoogle Scholar
  22. 22.
    Bai Z, Zhang Q, Lv J, Chao S, Yang L, Qiao J (2015) A facile preparation of palladium catalysts supported on hollow polypyrrole nanospheres for ethanol oxidation. Electrochim Acta 177:107–112. doi: 10.1016/j.electacta.2015.01.126 CrossRefGoogle Scholar
  23. 23.
    Karamil H, Nezhad AR (2013) Investigation of pulse-electropolymerization of conductive polypyrrole nanostructures. Int J Electrochem Sci 8:8905–8921Google Scholar
  24. 24.
    Krishna PK, Keith S, Katuri KP, Scott K, Head IM (2011) Microbial fuel cells meet with external resistance. Bioresour Technol Bioresour Technol 102:2758–2766. doi: 10.1016/j.biortech.2010.10.147 CrossRefGoogle Scholar
  25. 25.
    Vernitskaya TY, Efimov ON (1997) Polypyrrole a conducting polymer: its synthesis, proprieties and application. Russ Chem Rev 66(5):443–457. doi: 10.1070/RC1997v066n05ABEH000261 CrossRefGoogle Scholar
  26. 26.
    Vilar EO, de Freitas NL, de Lirio FR, de Sousa FB (1998) Study of the electrical conductivity of graphite felt employed as a porous electrode. Braz J Chem Eng 15:1678–4383. doi: 10.1590/S0104-66321998000300007 CrossRefGoogle Scholar
  27. 27.
    Takashima W, Pandey SS, Kaneto K (2003) Cyclic voltammetric and electrochemomechanical characteristics of freestanding polypyrrole films in diluted media. Thin Solid Films 438–439:339–345. doi: 10.1016/S0040-6090(03)00757-0 CrossRefGoogle Scholar
  28. 28.
    Li Chao, Zhang L, Ding L, Ren H, Cui H (2011) Effect of conductive polymers coated anode on the performance of microbial fuel cells (MFCs) and its biodiversity analysis. Biosens Bioelectron 26:4169–4176. doi: 10.1016/j.bios.2011.04.018 CrossRefGoogle Scholar
  29. 29.
    Chen A, Wang H, Zhao B, Li X (2003) The preparation of polypyrrole-Fe3O4 nanocomposites by the use of common ion effect. Synth Met 139:411–415. doi: 10.1016/S0379-6779(03)00190-5 CrossRefGoogle Scholar
  30. 30.
    Reddy KR, Lee KP, Gopalan AI, Kim MS, Showkat AM, Young CN (2006) Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J Polym Sci Part A Polym Chem 44:3355–3364. doi: 10.1002/pola.21451 CrossRefGoogle Scholar
  31. 31.
    Reddy KR, Lee KP, Gopalan AI (2008) Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf A 320:349–356. doi: 10.1016/j.colsurfa.2007.12.057 CrossRefGoogle Scholar
  32. 32.
    Ambade RB, Ambade SB, Salunkhe RR, Malgras V, Jin SH, Yamauchi Y, Lee SH (2016) Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density. J Mater Chem A 4:7406–7415. doi: 10.1039/C6TA00683C CrossRefGoogle Scholar
  33. 33.
    Champavert J, Rejeb SB, Innocent C, Pontié M (2015) Microbial fuel cell based on Ni-tetra sulfonated phthalocyanine cathode and graphene modified bioanode. J Electroanal Chem 757:270–276. doi: 10.1016/j.jelechem.2015.09.012 CrossRefGoogle Scholar
  34. 34.
    Cercado-Quezada B, Delia ML, Bergel A (2010) Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresour Technol 101:2748–2754. doi: 10.1016/j.biortech.2009.11.076 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mekhaissia Ouis
    • 1
  • Mostefa Kameche
    • 1
  • Christophe Innocent
    • 2
  • Mustapha Charef
    • 1
  • Hakima Kebaili
    • 1
  1. 1.Laboratoire de Physico-Chimie des Matériaux, Catalyse et EnvironnementUniversité des Sciences et de la Technologie d’Oran-Mohammed BoudiafOranAlgérie
  2. 2.Institut Européen des MembranesUMR 5635, Université Montpellier II, CC 047Montpellier Cedex 5France

Personalised recommendations