Polymer Bulletin

, Volume 75, Issue 1, pp 31–45 | Cite as

Synthesis and characterization of zein-based superabsorbent hydrogels and their potential as heavy metal ion chelators

  • Na Ni
  • Daihui Zhang
  • Marie-Josée Dumont
Original Paper


Superabsorbent hydrogels were synthesized by solution-based graft copolymerization of acrylic acid monomers on the hydrolyzed zein protein backbones in the presence of an acrylamide crosslinker, sodium bisulfite and potassium persulfate as initiators. The grafting was confirmed by Fourier transform infrared spectroscopy and the morphology was studied by scanning electron microscopy. A loose structure was observed in the hydrolyzed zein protein-g-polyacrylic acid. Moreover, differential scanning calorimetry and swelling tests were performed to evaluate the effect of the formulations on the thermal and swelling properties of the hydrogels. The highest equilibrium swelling value in distilled water reached 239.6 g/g of hydrogel. The potential of these materials as heavy metal ions chelator was also assessed. The preliminary results showed that the hydrogels had a good copper ion chelation capacity (maximum of 208 mg/g at pH 4.5), probably due to the presence of a large number of functional groups from the polyacrylic acid and the hydrolyzed zein protein.


Hydrogel Superabsorbent polymers Zein Heavy metal 



This research was funded by the Fonds de Recherche du Québec—Nature et Technologies (FRQNT). We gratefully acknowledge the use of laboratory equipment of Prof. Valérie Orsat and Prof. G.S. Vijaya Raghavan.


  1. 1.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRefGoogle Scholar
  2. 2.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121CrossRefGoogle Scholar
  3. 3.
    Montesano FF, Parente A, Santamaria P, Sannino A, Serio F (2015) Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric Agric Sci Proced 4:451–458Google Scholar
  4. 4.
    Mignon A, Snoeck D, Schaubroeck D, Luickx N, Dubruel P, Van Vlierberghe S, De Belie N (2015) pH-responsive superabsorbent polymers: a pathway to self-healing of mortar. React Funct Polym 93:68–76CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Su H, Fang L, Tan T (2005) Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature- and pH-responsiveness properties. Polym 46(14):5368–5376CrossRefGoogle Scholar
  6. 6.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRefGoogle Scholar
  7. 7.
    Pourjavadi A, Barzegar S (2009) Synthesis and evaluation of pH and thermosensitive pectin-based superabsorbent hydrogel for oral drug delivery systems. Starch Stärke 61(3–4):161–172CrossRefGoogle Scholar
  8. 8.
    Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5(73):59745–59757CrossRefGoogle Scholar
  9. 9.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451Google Scholar
  10. 10.
    Su X, Zhang G, Xu K, Wang J, Song C, Wang P (2008) The effect of MMT/Modified MMT on the structure and performance of the superabsorbent composite. Polym Bull 60(1):69–78CrossRefGoogle Scholar
  11. 11.
    Zhang J, Wang A (2007) Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React Funct Polym 67(8):737–745CrossRefGoogle Scholar
  12. 12.
    Santiago F, Mucientes AE, Osorio M, Poblete FJ (2006) Synthesis and swelling behaviour of poly (sodium acrylate)/sepiolite superabsorbent composites and nanocomposites. Polym Int 55(8):843–848CrossRefGoogle Scholar
  13. 13.
    Yi J-Z, Zhang L-M (2007) Studies of sodium humate/polyacrylamide/clay hybrid hydrogels. I. Swelling and rheological properties of hydrogels. Eur Polym J 43(8):3215–3221CrossRefGoogle Scholar
  14. 14.
    Liu C, Yu L, Zhang Y, Zhang B, Liu J, Zhang H (2013) Preparation of poly(sodium acrylate-acrylamide) superabsorbent nanocomposites incorporating graphene oxide and halloysite nanotubes. RSC Adv 3(33):13756–13763CrossRefGoogle Scholar
  15. 15.
    Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39(7):1341–1348CrossRefGoogle Scholar
  16. 16.
    Omidian H, Hashemi SA, Sammes PG, Meldrum I (1999) Modified acrylic-based superabsorbent polymers (dependence on particle size and salinity). Polymer 40(7):1753–1761CrossRefGoogle Scholar
  17. 17.
    Omidian H, Hashemi SA, Sammes PG, Meldrum IG (1998) Modified acrylic-based superabsorbent polymers. Effect of temperature and initiator concentration. Polymer 39(15):3459–3466CrossRefGoogle Scholar
  18. 18.
    Kabiri K, Hesarian S, Zohuriaan-Mehr MJ, Jamshidi A, Boohendi H, Pourheravi MR, Hashemi SA, Omidian H, Fathollahi S (2011) Superabsorbent polymer composites: does clay always improve properties? J Mater Sci 46(20):6718–6725CrossRefGoogle Scholar
  19. 19.
    Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MFT, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385CrossRefGoogle Scholar
  20. 20.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289CrossRefGoogle Scholar
  21. 21.
    Wu F, Zhang Y, Liu L, Yao J (2012) Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste. Carbohydr Polym 87(4):2519–2525CrossRefGoogle Scholar
  22. 22.
    Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84(1):76–82CrossRefGoogle Scholar
  23. 23.
    Bao Y, Ma J, Sun Y (2012) Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydr Polym 88(2):589–595CrossRefGoogle Scholar
  24. 24.
    Yadav M, Rhee KY (2012) Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior. Carbohydr Polym 90(1):165–173CrossRefGoogle Scholar
  25. 25.
    Wang X, Zheng Y, Wang A (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J Hazard Mater 168(2–3):970–977CrossRefGoogle Scholar
  26. 26.
    Ferfera-Harrar H, Aouaz N, Dairi N (2016) Environmental-sensitive chitosan-g-polyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: synthesis and properties. Polym Bull 73(3):815–840CrossRefGoogle Scholar
  27. 27.
    Şimşek S (2016) Adsorption properties of lignin containing bentonite-polyacrylamide composite for ions. Desalt Water Treat 57(50):23790–23799CrossRefGoogle Scholar
  28. 28.
    Wool R, Sun XS (2011) Bio-based polymers and composites. Elsevier, AmsterdamGoogle Scholar
  29. 29.
    Zhang B, Cui Y, Yin G, Li X, You Y (2010) Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel. Int J Polym Mater 59(12):1018–1032CrossRefGoogle Scholar
  30. 30.
    Shi W, Dumont M-J, Ly EB (2014) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur Polym J 54:172–180CrossRefGoogle Scholar
  31. 31.
    Pourjavadi A, Kurdtabar M, Mahdavinia RG, Hosseinzadeh H (2006) Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym Bull 57(6):813–824CrossRefGoogle Scholar
  32. 32.
    Hwang D-C, Damodaran S (1997) Synthesis and properties of fish protein-based hydrogel. J Am Oil Chem Soc 74(9):1165–1171CrossRefGoogle Scholar
  33. 33.
    Pourjavadi A, Harzandi AM, Hosseinzadeh H (2005) Modified carrageenan. 6. Crosslinked graft copolymer of methacrylic acid and kappa-carrageenan as a novel superabsorbent hydrogel with low salt- and high pH-sensitivity. Macromol Res 13(6):483–490CrossRefGoogle Scholar
  34. 34.
    Zhang B, Cui Y, Yin G, Li X, Liao L, Cai X (2011) Synthesis and swelling properties of protein-poly(acrylic acid-co-acrylamide) superabsorbent composite. Polym Compos 32(5):683–691CrossRefGoogle Scholar
  35. 35.
    Zohuriaan-Mehr MJ, Pourjavadi A, Salimi H, Kurdtabar M (2009) Protein- and homo poly(amino acid)-based hydrogels with super-swelling properties. Polym Adv Technol 20(8):655–671CrossRefGoogle Scholar
  36. 36.
    Hu X, Deng Y (2015) Synthesis and swelling properties of silk sericin-g-poly(acrylic acid/attapulgite) composite superabsorbent. Polym Bull 72(3):487–501CrossRefGoogle Scholar
  37. 37.
    Sadeghi M, Hosseinzadeh H (2013) Synthesis and properties of collagen-g-poly (sodium acrylate-co-2-hydroxyethylacrylate) superabsorbent hydrogels. Braz J Chem Eng 30(2):379–389CrossRefGoogle Scholar
  38. 38.
    Deng L, Zhang H, Yang M, Mandal N, Zhu L (2014) Improving properties of superabsorbent composite induced by using alkaline protease hydrolyzed-sericin (APh-sericin). Polym Compos 35(3):509–515CrossRefGoogle Scholar
  39. 39.
    Pourjavadi A, Ayyari M, Amini-Fazl MS (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44(4):1209–1216CrossRefGoogle Scholar
  40. 40.
    Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crops Prod 13(3):171–192CrossRefGoogle Scholar
  41. 41.
    Parris N, Cooke PH, Hicks KB (2005) Encapsulation of essential oils in zein nanospherical particles. J Agric Food Chem 53(12):4788–4792CrossRefGoogle Scholar
  42. 42.
    Ozcalik O, Tihminlioglu F (2013) Barrier properties of corn zein nanocomposite coated polypropylene films for food packaging applications. J Food Eng 114(4):505–513CrossRefGoogle Scholar
  43. 43.
    Zhu L, Chen J, Tang X, Xiong YL (2008) Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J Agric Food Chem 56(8):2714–2721CrossRefGoogle Scholar
  44. 44.
    Morawsky N, Martino GT, Guth J, Tsai J, Jeffcoat R (1996) Hydrolyzed zein as hair fixative in hair compositions. US 5518717 AGoogle Scholar
  45. 45.
    Payne RA, Tyrpin HT (1990) Method of producing an aqueous zein solution. EP0383428 A2Google Scholar
  46. 46.
    Rivas BL, Maturana HA, Villegas S, Pereira E (1998) Highly Pb(II)-selective resin based on crosslinked poly(acrylamido glycolic acid) copolymer. Polym Bull 40(6):721–728CrossRefGoogle Scholar
  47. 47.
    Yu Y, Peng R, Yang C, Tang Y (2015) Eco-friendly and cost-effective superabsorbent sodium polyacrylate composites for environmental remediation. J Mater Sci 50(17):5799–5808CrossRefGoogle Scholar
  48. 48.
    Zheng Y, Hua S, Wang A (2010) Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly(acrylic acid)/sodium humate hydrogels. Desalination 263(1–3):170–175CrossRefGoogle Scholar
  49. 49.
    Hwang D-C, Damodaran S (1997) Metal-chelating properties and biodegradability of an ethylenediaminetetraacetic acid dianhydride modified soy protein hydrogel. J Appl Polym Sci 64(5):891–901CrossRefGoogle Scholar
  50. 50.
    Pourjavadi A, Salimi H, Amini-Fazl MS, Kurdtabar M, Amini-Fazl AR (2006) Optimization of synthetic conditions of a novel collagen-based superabsorbent hydrogel by Taguchi method and investigation of its metal ions adsorption. J Appl Polym Sci 102(5):4878–4885CrossRefGoogle Scholar
  51. 51.
    Rathna GVN, Damodaran S (2001) Swelling behavior of protein-based superabsorbent hydrogels treated with ethanol. J Appl Polym Sci 81(9):2190–2196CrossRefGoogle Scholar
  52. 52.
    Ni Y, Chen S, Kokot S (2002) Spectrophotometric determination of metal ions in electroplating solutions in the presence of EDTA with the aid of multivariate calibration and artificial neural networks. Anal Chim Acta 463(2):305–316CrossRefGoogle Scholar
  53. 53.
    Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40(7):1399–1407CrossRefGoogle Scholar
  54. 54.
    Xu X, Bai B, Ding C, Wang H, Suo Y (2015) Synthesis and properties of an ecofriendly superabsorbent composite by grafting the poly(acrylic acid) onto the surface of dopamine-coated sea buckthorn branches. Ind Eng Chem Res 54(13):3268–3278CrossRefGoogle Scholar
  55. 55.
    Singh B, Sharma N (2009) Mechanistic implication for cross-linking in sterculia-based hydrogels and their use in GIT drug delivery. Biomacromol 10(9):2515–2532CrossRefGoogle Scholar
  56. 56.
    Hu X (2011) Synthesis and properties of silk sericin-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogel. Polym Bull 66(4):447–462CrossRefGoogle Scholar
  57. 57.
    Hwang D-C, Damodaran S (1996) Chemical modification strategies for synthesis of protein-based hydrogel. J Agric Food Chem 44(3):751–758CrossRefGoogle Scholar
  58. 58.
    Wang W, Kang Y, Wang A (2013) One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res 20(3):101CrossRefGoogle Scholar
  59. 59.
    Nesrinne S, Djamel A (2013) Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels. Arab J Chem. doi: 10.1016/j.arabjc.2013.11.027 Google Scholar
  60. 60.
    Bennour S, Louzri F (2014) Study of swelling properties and thermal behavior of poly(N,N-dimethylacrylamide-co-maleic acid) based hydrogels. Adv Chem. doi: 10.1155/2014/147398 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Bioresource Engineering DepartmentMcGill UniversitySte-Anne-De-BellevueCanada

Personalised recommendations