Advertisement

Polymer Bulletin

, Volume 74, Issue 12, pp 5163–5179 | Cite as

Real-time polymerization monitoring in a dual-cured resin cement by magnetic resonance

  • Bruno Luiz Santana Vicentin
  • Antonio Marchi Netto
  • Luiz Henrique Dall’Antonia
  • Eduardo Di Mauro
  • Bernhard Blümich
Original Paper

Abstract

The polymerization process of the dual-cured resin cement AllCem (FGM, Joinvile, Brazil) was investigated by unilateral nuclear magnetic resonance (NMR-MOUSE) and electron paramagnetic resonance (EPR). The NMR experiment allows measurements of the mobile monomers as function of time and depth, while real-time X-band EPR monitoring gives information about the concentration of free radicals. The monomer concentration instantly decays for photo-cured samples, but it remains constant about ~4 min for self-cured samples before starting to decrease. For the self-cured sample, the concentration of free radicals suddenly decreases to zero and then reappears with a strongly increasing rate. Models for the polymerization kinetics of each initiation protocol are proposed, giving insight into the polymerization process of the dual-cured resin cement.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Monomer Concentration Electron Paramagnetic Resonance Spectroscopy Glycidyl Methacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

I

Initiator

A

Amine

M

Monomer unit

R

Radical

\({\text{RM}}_{n}^{ *}\)

Active macroradical

A*

Amine radical

I*

Initiator radical

\({\text{RM}}_{{n,{\text{b}}}}^{ *}\)

Trapped macroradical with n monomer units

Z

Inhibitor

Dn+m

“Dead” polymer containing n + m monomer units

kd

Initiator decomposition rate constant

kp

Propagation rate constant

kt

Termination rate constant

kb

Radical trapping rate constant

kz

Inhibition rate constant

f1 and f2

Efficiency factors

CQ

Camphorquinone

I0

The intensity of light absorbed in the surface

φ

Extinction coefficient

α

Initiation efficiency

d

The length of the light path in the sample

RPR

Rate of production of primary radicals

β

Fraction of exciplex forming free radicals

RP

Rate of propagation

Rt

Rate of termination

Notes

Acknowledgements

The authors thank the FGM Produtos Odontológicos Ltda (Joinvile, SC, Brazil) for providing dental materials. The author AMN thanks Brazilian National Council for Scientific and Technological Development (CNPQ) for financial support (Grant No. 290010/2009-8).

References

  1. 1.
    Kwon T-Y, Bagheri R, Kim YK, Kim K-H, Burrow MF (2012) Cure mechanisms in materials for use in esthetic dentistry. J Invest Clin Dent 3:3–16CrossRefGoogle Scholar
  2. 2.
    Achilias DS, Sideridou I (2002) Study of the effect of two BPO/amine initiation system on the free radical polymerization of MMA used in dental resins and bone cements. J Macromol Sci A 39:1435–1450CrossRefGoogle Scholar
  3. 3.
    Antonucci JM, Grams CL, Termini DJ (1979) New initiator systems for dental resins based on ascorbic acid. J Dent Res 58:1887–1899CrossRefGoogle Scholar
  4. 4.
    Vicentin BLS, Salomão FM, Hoeppner MG, Di Mauro E (2016) Influence of geometrical configuration of a translucent fiberglass post on the polymerization of a dual cure resin cement analyzed by epr spectroscopy. Appl Magn Reson 47:211–222CrossRefGoogle Scholar
  5. 5.
    Salomão FM, Vicentin BLS, Contreras EFR, Hoeppner MG, Di Mauro E (2015) The inflence of a translucent fiberglass post on the polymerization of dual cure resin cement analyzed by electron paramagnetic resonance. Mater Res 18:1023–1028CrossRefGoogle Scholar
  6. 6.
    Silva ALF, Arias VG, Soares LES, Martin AM, Martins LRM (2007) Influence of fiber-post translucency on the degree of conversion of a dual-cured resin cement. J Endod 33:303–305CrossRefGoogle Scholar
  7. 7.
    Calixto LR, Bandéca MC, Clavijo V, Andrade MF, Vaz LG, Campos EA (2012) Effect of resin cement system and root region on the push–out bond strength of a translucent fiber post. Oper Dent 37:80–86CrossRefGoogle Scholar
  8. 8.
    Pegoraro TA, Da Silva NRFA, Carvalho RM (2007) Cements for use in esthetic dentistry. Dent Clin North Am 51:453–471CrossRefGoogle Scholar
  9. 9.
    Fontes AS, Vicentin BLS, Valezi DF, Costa MF, Sano W, Di Mauro E (2014) A multifrequency (X-, Q-, and W-band) EPR and DFT study of a photopolymerizable dental resin. Appl Magn Reson 44:681–692CrossRefGoogle Scholar
  10. 10.
    Netto AM, Steinhaus J, Hausnerova B, Moeginger B, Blümich B (2013) Time-resolved study of the photo-curing process of dental resins with the NMR-MOUSE. Appl Magn Reson 44:1027–1039CrossRefGoogle Scholar
  11. 11.
    Blümich B, Haber-Pohlmeier S, Zia W (2014) Compact NMR. De Gruyter, BerlinCrossRefGoogle Scholar
  12. 12.
    Achilias DS, Sideridou ID (2004) kinetics of the benzoyl peroxide/amine initiated free-radical polymerization of dental dimethacylate monomers: experimental studies and mathematical modeling for TEGDMA and Bis-EMA. Macromolecules 37:4254–4265CrossRefGoogle Scholar
  13. 13.
    Vicentin BLS, Netto AM, Blümich B, Di Mauro E (2016) Identification of free radicals generated by different curing modes in a dental resin cement. Appl Magn Reson 47:1003–1014CrossRefGoogle Scholar
  14. 14.
    Gear CW (1981) Numerical solution of ordinary differential equations: is there anything left to do? SIAM Rev 23:10–24CrossRefGoogle Scholar
  15. 15.
    Sideridou ID, Achilias DS, Karava O (2006) Reactivity of benzoyl peroxide/amine system as an initiator for the free radical polymerization of dental and orthopaedic dimethacrylate monomers: effect of the amine and monomer chemical structure. Macromolecules 39:2072–2080CrossRefGoogle Scholar
  16. 16.
    Truffier-Boutry D, Gallez XA, Demoustier-Champagne S, Devaux J, Mestdagh M, Champagne B, Leloup G (2003) Identification of free radicals trapped in solid methacrylated resins. J Polym Sci A Polym Chem 41:1691–1699CrossRefGoogle Scholar
  17. 17.
    Watss DC (2005) Reaction kinetics and mechanics in photo-polymerised networks. Dent Mater 21:27–35CrossRefGoogle Scholar
  18. 18.
    Hiemenz PC (1984) Polymer chemistry. Marcel Dekker, New YorkGoogle Scholar
  19. 19.
    Cook WD (1992) Photopolymerization kinetics of dimethacrylates using the camphorquinone amine initiator system. Polymer 68:125–151Google Scholar
  20. 20.
    Pick B, Gonzaga CC, Junior WS, Kawano Y, Braga RR, Cardoso PEC (2010) Influence of curing light attenuation caused by aesthetic indirect restorative materials on resin cement polymerization. Eur J Dent 4:314–323Google Scholar
  21. 21.
    Reges RV, Costa AR, Correr AB, Piva E, Puppin-Rontani RM, Sinhoreti MA, Correr-Sobrinho L (2009) Effect of light-curing units, post-cured time and shade of resin cement on Knoop hardness. Braz Dent J 20:410–413CrossRefGoogle Scholar
  22. 22.
    Goodner MD, Bowman CN (1999) Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics. Macromolecules 32:6552–6559CrossRefGoogle Scholar
  23. 23.
    Fontes AS, Sano W, Dall’Antonia LH, Di Mauro E (2010) EPR in the characterization of the shade effect on translucence, remaining free radicals, and polymerization depth of commercially available resin composites. Appl Magn Reson 39:381–390CrossRefGoogle Scholar
  24. 24.
    Leprince J, Lamblin G, Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Mestdagh M, Leloup G (2009) Kinetic study of free radicals trapped in dental resins stored in different environments. Acta Biomater 5:2518–2524CrossRefGoogle Scholar
  25. 25.
    Leprince JG, Lamblin G, Devaux J, Dewaele M, Mestdagh M, Palin WM, Gallez B, Leloup G (2010) Irradiation modes’ impact on radical entrapment in photoactive resins. J Dent Res 89:1494CrossRefGoogle Scholar
  26. 26.
    Trommsdorff VE, Kole H, Lagally P (1948) Polymerization of methyl methacrylates. Makromol Chem 1:169–198CrossRefGoogle Scholar
  27. 27.
    Ruyter IE, Svendsen SA (1978) Remaining methacrylate groups in composite restorative materials. Acta Odontol Scand 36:75–82CrossRefGoogle Scholar
  28. 28.
    Truffier-Boutry D, Demoustier-Champagne S, Devaux J, Biebuyck JJ, Mestdagh M, Larbanois P, Leloup G (2006) A physico-chemical explanation of the post-polymerization shrinkage in dental resins. Dent Mater 22:405–412CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Bruno Luiz Santana Vicentin
    • 1
  • Antonio Marchi Netto
    • 2
  • Luiz Henrique Dall’Antonia
    • 3
  • Eduardo Di Mauro
    • 1
  • Bernhard Blümich
    • 2
  1. 1.Departmento de FísicaUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
  3. 3.Departmento de QuímicaUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations