Polymer Bulletin

, Volume 74, Issue 8, pp 3379–3398 | Cite as

Preparation, antimicrobial and antioxidant evaluation of indole-3-acetic acid-based pH-responsive bio-nanocomposites

  • G. Chitra
  • D. S. Franklin
  • S. Sudarsan
  • M. Sakthivel
  • S. GuhanathanEmail author
Original Paper


Nanocomposites were synthesized among citric acid, ethylene glycol and indole-3-acetic acid by condensation followed by incorporating silver nanoparticles (AgNPs) in a hydrogel. The formation of parent hydrogel and their nanocomposites were identified by Fourier transform infrared spectroscopy. The incorporation of silver nanoparticles in the hydrogel network, surface morphology and size of nanoparticles were established by ultraviolet spectroscopy, scanning electron microscopy and transmission electron microscopy, respectively. The thermal properties of the hydrogels were studied by TGA–DTA analysis. The parent hydrogel (ICE) and nanocomposites revealed a good pH-sensitive swelling behavior at acidic media than in basic media. In vitro examination of fungal activity revealed all prepared hydrogels as effective against Aspergillus fumigatus, Rhizopus oryzae and Candida albicans. Further, the antibacterial properties of the optimum sample were successfully evaluated against Gram-positive (Bacillus aureus, Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The prepared nanocomposites showed a higher antimicrobial activity than that of the parent hydrogel. Further, the radical scavenging ability of the hydrogel and nanocomposites were estimated using DPPH (2,2-diphenyl-1-picryl-hydrazyl) and nitric oxide radicals. The prepared nanocomposites with tuned antibacterial, antifungal and antioxidant properties can be used for wound healing, burn dressing, treatment of topical fungal infections and for other biomedical applications.


Indole-3-acetic acid Composite hydrogel Antimicrobial Antioxidant Antifungal 


  1. 1.
    Narayana Reddy N, Varaprasad K, Ravindra S, Subba Reddy GV, Reddy KMS, Mohan Reddy KM, Mohana Raju K (2011) Evaluation of blood compatibility and drug release studies of gelatin based magnetic hydrogel nano composites. Colloids Surf A PhyChem Asp 285:20–27. doi: 10.1016/j.colsurfa.2011.05006 CrossRefGoogle Scholar
  2. 2.
    Bajpai SK, Mohan YM, Bajpai M, Tankhiwale R, Thomas V (2007) Synthesis of polymer stabilized silver and gold nano structures. J Nanosci Nanotechnol 7:2994–3010CrossRefGoogle Scholar
  3. 3.
    Vimala K, Mohana KM, Sivudua K, Varaprasad K, Raju KM (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Biointerfaces 76:248–258. doi: 10.1016/j.colsurfb.2009.10.044 CrossRefGoogle Scholar
  4. 4.
    Hatches JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402. doi: 10.1021/nn800131j CrossRefGoogle Scholar
  5. 5.
    Raffi M, Hussain F, Bhatti TM, Akhter J, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196Google Scholar
  6. 6.
    George N, Faoagali J, Muller M (1997) Silvazine (silver sulfadiazine and chlorhexidine) activity against 200 clinical isolates. Burns 23:493–495CrossRefGoogle Scholar
  7. 7.
    AshaRani PV, Kah Mun GL, Hand M, Valiyaveetil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. Am Chem Soc Nano J 3:279–290. doi: 10.1021/nn800596w Google Scholar
  8. 8.
    Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148CrossRefGoogle Scholar
  9. 9.
    Sudarsan S, Franklin DS, Sakthivel M, Guhanathan S (2016) Non toxic, antibacterial, biodegradable hydrogels with pH-stimuli sensitivity: investigation of swelling parameters. Carbohydr Polym 148:206–215. doi: 10.1016/j.carbpol.2016.04.060 CrossRefGoogle Scholar
  10. 10.
    Cassano R (2009) Synthesis and antioxidant activity evaluation of novel cellulose hydrogel containing trans-ferulic acid. Carbohydr Polym 75:84–88Google Scholar
  11. 11.
    Trombino S, Cassano R, Bloise E, Muzzalupo R, Tavano L, Picci N (2009) Synthesis and antioxidant activity evaluation of a novel cellulose hydrogel containing trans-ferulic acid. Carbohydr Polym 75:184–188. doi: 10.1016/j.carbpol.2008.05.018 CrossRefGoogle Scholar
  12. 12.
    He C, Pan Y, Ji X, Wang H (2012) Antioxidant polymers: synthesis, properties, and applications, engineering antioxidant polymers in wound healing and tissue engineering. Wiley-Scrivener 472, New York, USAGoogle Scholar
  13. 13.
    Franklin DS, Guhanathan S (2015) Influence of chain length of diol on the swelling behavior of citric acid based pH sensitive polymeric hydrogels: a green approach. J Appl Polym Sci 132:41921. doi: 10.1002/app.41403 Google Scholar
  14. 14.
    Franklin DS, Guhanathan S (2014) Synthesis and characterization of citric acid-based pH-sensitive biopolymeric hydrogels. Polym Bull 71:93. doi: 10.1007/s00289-013-1047-4 CrossRefGoogle Scholar
  15. 15.
    Franklin DS, Guhanathan S (2014) Performance of silane-coupling agent-treated hydroxyapatite/diethylene glycol-based pH-sensitive biocomposite hydrogels. Iran Polym J 23:809. doi: 10.1007/s13726-014-0278-z CrossRefGoogle Scholar
  16. 16.
    Franklin DS, Guhanathan S (2013) pH and salt responsive biopolymeric hydrogels: synthesis and characterization. Int J Front Sci Technol 1:115–131Google Scholar
  17. 17.
    Sakthivel M, Franklin DS, Guhanathan S (2014) Investigation on itaconic acid based pH and salt-responsive bio-polymeric hydrogel. Int J Adv Chem Sci Appl 2:19–21Google Scholar
  18. 18.
    Sudarsan S, Franklin DS, Guhanathan S (2015) pH and salt responsibility of sodium alginate biopolymeric hydrogels—by greener approach macromolecule. Indian J 11:24Google Scholar
  19. 19.
    Yu T, Chen J, Lu H, Zheng X (2009) Indole-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptococcus laurentii. 3:258–264. doi: 10.1094/PHYTO-99-3-0258
  20. 20.
    Amany A, El-Kheshen SF, El-Rab Gad (2012) Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der Pharma Chem 4:53–65Google Scholar
  21. 21.
    Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200. doi: 10.1038/1811199a0 CrossRefGoogle Scholar
  22. 22.
    Sreejayan N, Rao MNA (1947) Nitric oxide scavenging by curcuminoids. J Pharma 49:105–107CrossRefGoogle Scholar
  23. 23.
    Kim B, Peppas NA (2003) Analysis of molecular interactions in poly (methacrylic acid-g-ethylene glycol) hydrogels. Polymer 44:3701–3707. doi: 10.1016/S0032-3861(03)00307-0 CrossRefGoogle Scholar
  24. 24.
    Sadeghi M, Heidari B (2011) Crosslinked graft copolymer of methacrylic acid and gelatin as a novel hydrogel with pH-responsiveness properties. Material 4:543–552. doi: 10.3390/ma4030543 CrossRefGoogle Scholar
  25. 25.
    Franklin DS, Guhanathan S (2015) Influence of chain length of the deal on the swelling behavior of citric acid based pH sensitive polymeric hydrogels—a green approach. J Appl Polym Sci 132:41403. doi: 10.1002/app.41403 Google Scholar
  26. 26.
    Margaret Marie J, Puvanakrishnan R, Nanthini R (2011) Synthesis, characterisation and swelling studies of poly (diol citrate-co-diol sebacate) elastomers. Int J Basic Appl Chem Sci 1:46–49Google Scholar
  27. 27.
    Jayaramudu T, Raghavendra GM, Varaprasad K, Reddy GVS, Reddy AB, Sudhakar K (2016) Preparation and characterization of poly (ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process. J Appl Polym Sci 133:43027. doi: 10.1002/app.43027 CrossRefGoogle Scholar
  28. 28.
    Bajpai SK, Chand N, Mahendra M (2013) In situ formation of silver nanoparticles in poly (methacrylic acid) hydrogel for antibacterial applications. Polym Eng Sci 53:1751–1759. doi: 10.1002/pen.23424 CrossRefGoogle Scholar
  29. 29.
    Metzler M, Chylińska M, Kaczmarek H (2015) Preparation and characteristics of nanosilver composite based on chitosan-graft-acrylic acid copolymer. J Polym Res 22:146. doi: 10.1007/s10965-015-0781-8 CrossRefGoogle Scholar
  30. 30.
    Murthy PSK, Murali Mohan Y, Varaprasada K, Sreedhar B, Mohana Raju K (2008) First successful design of semi-IPN hydrogel–silver nano composites: a facile approach for antibacterial application. J Colloid Sci 318:224CrossRefGoogle Scholar
  31. 31.
    Ajitha B, Reddy YAK, Reddy PS (2015) Enhanced antimicrobial activity of silver nanoparticles with controlled particle size by pH variation. Powder Technol 269:110–117. doi: 10.1016/j.powtec.2014.08.049 CrossRefGoogle Scholar
  32. 32.
    Theivasanthi T, Alagar M (2011) Studies of silver nanoparticles effects on microorganisms. Ann Biol Res 2:82. doi: 10.1039/C2RA20684F Google Scholar
  33. 33.
    Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi: 10.1007/s11051-010-9900-y CrossRefGoogle Scholar
  34. 34.
    Chandra Babu A, Prabhakar MN, Suresh Babu A, Mallikarjuna B, Subha MCS, ChowdojiRao K (2013) Development and characterization of semi-IPN silver nanocomposites for antibacterial applications. Int J Carbohydr Chem 8:2013. doi: 10.1155/2013/243695 Google Scholar
  35. 35.
    Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A (2009) Characterization of antibacterial silver coated yarns. J Mater Sci 20:2361–2366. doi: 10.1007/s10856-009-3796-z Google Scholar
  36. 36.
    Vimala K, Mohan YM, Varaprasad K, Redd NN, Ravindra S, Naidu NS, Raju KM (2011) Fabrication of curcumin encapsulated chitosan–PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2:55–64. doi: 10.4236/jbnb.2011.21008 CrossRefGoogle Scholar
  37. 37.
    Ma YQ, Yi JZ, Zhang LM (2009) A facile approach to incorporate silver nanoparticles into dextran-based hydrogels for antibacterial and catalytical application. J Macromol Sci Part A Pure Appl Chem 6:643–648CrossRefGoogle Scholar
  38. 38.
    Gonzalez-Henrıquez CM, Pizarro GDC, Sarabia-Vallejos MA, Terraza CA, Lopez-Cabana ZE (2014) In situ-preparation and characterization of silver-HEMA/PEGDA hydrogel matrix nano composites: silver inclusion studies into hydrogel matrix. Arab J Chem 12:11. doi: 10.1016/j.arabjc.2014.11.012 Google Scholar
  39. 39.
    Ghaffari-Moghaddam M, Eslahi H (2013) Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab J Chem 7:846–855. doi: 10.1016/j.arabjc.2013.11.011 CrossRefGoogle Scholar
  40. 40.
    Mohamed NA, Fahmy MM (2012) Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int J Mol Sci 13:11194–11209. doi: 10.3390/ijms130911 CrossRefGoogle Scholar
  41. 41.
    Shi ZL, Neoha KG, Kanga ET, Wang W (2006) Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27:2440–2449. doi: 10.1016/j.biomaterials.2005.11.036 CrossRefGoogle Scholar
  42. 42.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Huwan Y, Kim YK, Lee YS, Jeong DH, Chou MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101. doi: 10.1016/j.nano.2006.12.001 CrossRefGoogle Scholar
  43. 43.
    Prabhu S, Poulose EK (2011) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32–42. doi: 10.1186/2228-5326-2-32 CrossRefGoogle Scholar
  44. 44.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. doi: 10.1016/j.jcis.2004.02.012 CrossRefGoogle Scholar
  45. 45.
    Fatma S, Aggor M, Enas Ahmed AT, Aref Asem MA (2010) Synthesis and characterization of poly (acrylamide-co-acrylic acid) hydrogel containing silver nanoparticles for antimicrobial applications. J Am Sci 6:648–656Google Scholar
  46. 46.
    Shanthi W, Pazhanisamy P (2016) Synthesis, characterization and biological applications of poly (N-tert-amyl acrylamide-co-acrylamide-2-acrylamido-2-methylpropane sodium sulphonate) silver nanocomposites. Adv Polym Sci Technol Int J 6(1):1–7Google Scholar
  47. 47.
    Smelcerovic A, Knezevic-Jugovic Z, Petronijevic Z (2008) Microbial polysaccharide and their derivatives as current prospective pharmaceuticals. Curr Pharm Des 14:3168–3195CrossRefGoogle Scholar
  48. 48.
    Singh B, Sharma S, Dhiman A (2013) Design of antibiotic containing hydrogel wound dressings: biomedical properties and histological study of wound healing. IJ Pharm 457:82–91. doi: 10.1016/J.Ijpharm.2013.09.028 Google Scholar
  49. 49.
    Naik N, Kumar HV, Harini ST (2011) Synthesis and antioxidant evaluation of novel indole-3-acetic acid analogues. Eur J Chem 2:337–341. doi: 10.5155/eurjchem.2.3.337-341.363 CrossRefGoogle Scholar
  50. 50.
    Chen Q, Jiang H, Ye H, Li J, Huang J (2014) Preparation, antibacterial, and antioxidant activities of silver/chitosan composites. J Carbohydr Chem 0:1–15. doi: 10.1080/07328303.2014.931962 Google Scholar
  51. 51.
    Ozcelik B, Lee JH, Min DB (2003) Effects of light, oxygen and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. J Food Sci 6:487–490. doi: 10.1111/j.1365-2621.2003.tb05699.x CrossRefGoogle Scholar
  52. 52.
    Arnao MB (2006) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case trends. Food Sci Technol 11:419–421. doi: 10.1016/S0924-2244(01)00027-9 CrossRefGoogle Scholar
  53. 53.
    Patel Rajesh M, Patel Natvar J (2011) In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods. J Adv Pharm Educ Res 1:52–68Google Scholar
  54. 54.
    Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2013) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18:356–363. doi: 10.1016/j.jscs.2013.09.011 CrossRefGoogle Scholar
  55. 55.
    Bunghez R, Barbinta Patrascu ME, Badea N, Doncea SM, Popescu A, Ion RM (2012) Antioxidant silver nanoparticles green synthesized using ornamental plants. J Optoelectron Adv Mater 14(11–12):1016–1022Google Scholar
  56. 56.
    Gupta AK, Kalpana S, Malik JK (2012) Synthesis and in vitro antioxidant activity of new 3-substituted-2-oxindole derivatives. Indian J Pharm Sci 74:481–486. doi: 10.4103/0250-474X.108445 CrossRefGoogle Scholar
  57. 57.
    Rostamzad H, Shabanpour B, Kashaninejad M, Shabani A (2011) Antioxidative activity of citric and ascorbic acids and their preventive effect on lipid oxidation in frozen persian sturgeon fillets. Lat Am Appl Res 41:135–140Google Scholar
  58. 58.
    Okoh SO, Asekun OT, Familoni OB, Afolayan AJ (2014) Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from Abrus precatorius (L). Antioxidants 3:278–287. doi: 10.3390/antiox3020278 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • G. Chitra
    • 1
    • 2
  • D. S. Franklin
    • 3
  • S. Sudarsan
    • 3
  • M. Sakthivel
    • 4
  • S. Guhanathan
    • 5
    Email author
  1. 1.Department of ChemistryPeriyar UniversitySalemIndia
  2. 2.Department of ChemistryBangalore College of Engineering and TechnologyChandapura, BangaloreIndia
  3. 3.Department of ChemistryC. Abdul Hakeem College of Engineering and TechnologyMelvisharamIndia
  4. 4.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  5. 5.PG and Research Department of ChemistryMuthurangam Government Arts CollegeVelloreIndia

Personalised recommendations