Polymer Bulletin

, Volume 74, Issue 8, pp 3283–3299 | Cite as

Ibuprofen and acetylsalicylic acid loaded electrospun PVP-dextran nanofiber mats for biomedical applications

  • Neslihan Nohut Maslakci
  • Seyhan Ulusoy
  • Emre Uygun
  • Halime Çevikbaş
  • Lutfi Oksuz
  • Hatice Kaplan Can
  • Aysegul Uygun Oksuz
Original Paper


The aim of this work is to investigate the suitability of electrospinning for biomedical applications and to produce fast-dissolving drug delivery through uniform dextran nanofiber nonwoven maps. To prepare oral fast-dissolving drug delivery nonwoven maps via electrospinning technology, ibuprofen (Ibu) and acetylsalicylic acid (ASA) as the model drugs, and polyvinylpyrrolidone (PVP), dextran T10 (Dext T10) and dextran T40 (Dext T40) as the filament-forming polymer and drug carrier were selected. Morphology of nanofiber samples was characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). SEM images showed homogeneous dispersion of drugs into the polymer blends. The structure analysis made by attenuated total reflectance/Fourier transform infrared spectroscopy suggested that PVP/dextran and drug blended very well in the nanofibers. The amount of ibuprofen and acetylsalicylic acid in a nanofiber samples was determined using reverse-phase high-performance liquid chromatography. The results showed that the ibuprofen content in PVP/Dext T40-Ibu and PVP/Dext T10-Ibu nanofiber samples (431.7 ± 39.7 and 528.3 ± 24.7 µg/mL, respectively) is significantly higher than acetylsalicylic acid content in PVP/Dext T40-ASA and PVP/Dext T10-ASA nanofiber samples (145.5 ± 5.6 and 168.3 ± 7.3 µg/mL, respectively). Antibacterial properties of the fiber samples containing drug against Gram-negative (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922) and Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633) were examined. The PVP-drug containing nanofibers resulted in a superior antibacterial activity than PVP/dextran-drug containing nanofibers. PVP/Dext T10 and PVP/Dext T40 nanofibers have the potential to be used as solid dispersions to improve the dissolution profiles of poorly water-soluble drugs and/or fast disintegrating drug delivery systems.


Nanofibers Electrospinning Dextran Ibuprofen 


  1. 1.
    Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y (2013) Electrospinning of nanofibers for tissue engineering applications. J Nanomater 2013:1–11Google Scholar
  2. 2.
    Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang C, Wei Y (2004) Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J Polym Sci Pol Phys 42:3721–3726CrossRefGoogle Scholar
  3. 3.
    Lee Y-F, Sridewi N, Ramanathan S, Sudesh K (2015) The Influence of electrospinning parameters and drug loading on polyhydroxyalkanoate (PHA) nanofibers for drug delivery. Int J Biotech Well Ind 4:103–113Google Scholar
  4. 4.
    Yu D-G, Shen X-X, Branford-White C, White K, Zhu L-M, Annie Bligh SW (2009) Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology 20:1–9Google Scholar
  5. 5.
    Ma G, Fang D, Liu Y, Zhu X, Nie J (2012) Electrospun sodium alginate/poly(ethylene oxide) core-shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym 87:737–743CrossRefGoogle Scholar
  6. 6.
    Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliver Rev 61:1033–1042CrossRefGoogle Scholar
  7. 7.
    Kim G-M, Le KHT, Giannitelli SM, Lee YJ, Rainer A, Trombetta M (2013) Electrospinning of PCL/PVP blends for tissue engineering scaffolds. J Mater Sci Mater Med 24:1425–1442CrossRefGoogle Scholar
  8. 8.
    Qureshi MA, Khatoon F, Ahmed S (2015) An overview on wounds their ıssues and natural remedies for wound healing. Biochem Physiol 4(3):1–9Google Scholar
  9. 9.
    Adomavičiütė E, Stanys S, Žilius M, Juškaitė V, Pavilonis A, Briedis V (2016) Formation and biopharmaceutical characterization of electrospun PVP mats with propolis and silver nanoparticles for fast releasing wound dressing. Biomed Res Int 2016:1–11Google Scholar
  10. 10.
    Kumar YS, Unnithan AR, Sen D, Kim CS, Lee YS (2015) Microgravity biosynthesized penicillin loaded electrospun polyurethane-dextran nanofibrous mats for biomedical applications. Colloid Surf A 477:77–83CrossRefGoogle Scholar
  11. 11.
    Unnithan AR, Sasikala ARK, Murugesan P, Gurusamy M, Wu D, Park CH, Kim CS (2015) Electrospun polyurethane-dextran nanofiber mats loaded with Estradiol for post-menopausal wound dressing. Int J Biol Macromol 77:1–8CrossRefGoogle Scholar
  12. 12.
    Unnithan AR, Barakat NAM, Pichiah PBT, Gnanasekaran G, Nirmala R, Cha Y-S, Jung C-H, El-Newehy M, Kim HY (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym 90:1786–1793CrossRefGoogle Scholar
  13. 13.
    Mitra S, Gaur U, Ghosh PC, Maitra AN (2001) Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release 74:317–323CrossRefGoogle Scholar
  14. 14.
    Cengiz-Çallıoğlu F (2014) Dextran nanofiber production by needleless electrospinning process. e-Polymers 14(1):5–13Google Scholar
  15. 15.
    Brant AJC (2008) Preparação e Caracterização de Hidrogéis a Partir de misturas de Soluções de Quitosana e Poli (N-vinil-2-pirrolidona). PhD dissertation, Chemistry Institute, University of São Paulo, Brazil, pp 1–169Google Scholar
  16. 16.
    De Faria DLA, Gil HAC, De Queiróz AAA (1999) The interaction between poly(vinyl pyrrolidone) and I2 as probed by Raman spectroscopy. J Mol Struct 478:93–98CrossRefGoogle Scholar
  17. 17.
    Raghunath RK, Panduranga K, Nagarajan B, Joseph TK (1985) Grafting of poly(vinyl pyrrolidione) onto gelatin and its application as synthetic plasma ex-pander. Eur Polym J 21:195–199CrossRefGoogle Scholar
  18. 18.
    Thomas J, Lowman A, Marcolongo M (2003) Novel associated hydrogels for nucleus pulposus replacement. J Biomed Mater Res A 67:1329–1337CrossRefGoogle Scholar
  19. 19.
    Razzak MT, Zainuddin E, Dewi SP, Lely H, Taty E, Sukirno (1999) The characterization of dressing component materials and radiation formation of PVA–PVP hydrogel. Rad Phy Chem 55:153–165CrossRefGoogle Scholar
  20. 20.
    Floyd CN, Ferro A (2014) Mechanisms of aspirin resistance. Pharmacol Ther 141(1):69–78CrossRefGoogle Scholar
  21. 21.
    Moore RA, Derry C (2012) Efficacy of OTC analgesics. Int J Clin Pract 67(Suppl. 178):21–25Google Scholar
  22. 22.
    Rainsford KD (ed) (2015) Ibuprofen: discovery, development and therapeutics. Wiley-Blackwell, New York. ISBN: 978-1-118-74338-6Google Scholar
  23. 23.
    Guo-en S, Hong T, Chun-ling Z, Yan-li D, Yi L (2010) Preparation of ultrafine water-soluble polymers nanofiber mats via electrospinning. Chem Res Chin Univ 26(2):318–322Google Scholar
  24. 24.
    Nasouri K, Shoushtari MA, Mojtahedi MRM (2015) Thermodynamic studies on polyvinylpyrrolidone solution systems used for fabrication of electrospun nanostructures: effects of the solvent. Adv Polym Technol 34(3):1–8CrossRefGoogle Scholar
  25. 25.
    Mohiti-Asli M, Saha S, Murphy SV, Gracz H, Pourdeyhimi B, Atala A, Loboa EG (2015) Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J Biomed Mater Res B Appl Biomater. doi: 10.1002/jbm.b.33520 Google Scholar
  26. 26.
    Lee C-H, Lin Y-H, Chang S-H, Tai C-D, Liu S-J, Chu Y, Wang C-J, Hsu M-Y, Chang H, Chang G-J, Hung K-C, Hsieh M-J, Lin F-C, Hsieh I-C, Wen M-S, Huang Y (2014) Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery. Int J Nanomed 9:311–326Google Scholar
  27. 27.
    Taepaiboon P, Rungsardthong U, Supaphol P (2006) Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17(9):2317–2329CrossRefGoogle Scholar
  28. 28.
    Del Gaudio C, Ercolani E, Galloni P, Santilli F, Baiguera S, Polizzi L, Bianco A (2013) Aspirin-loaded electrospun poly(e-caprolactone) tubular scaffolds: potential small-diameter vascular grafts for thrombosis prevention. J Mater Sci Mater Med 24:523–532CrossRefGoogle Scholar
  29. 29.
    Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. doi: 10.1016/j.arabjc.2015.11.015 Google Scholar
  30. 30.
    Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, Guo Z (2016) Coaxial electrospun fibers: applications in drug delivery and tissue engineering. WIREs Nanomed Nanobiotechnol 8:654–677CrossRefGoogle Scholar
  31. 31.
    Fang J, Niu HT, Lin T, Wang XG (2008) Applications of electrospun nanofibers. Chin Sci Bull 53:2265–2286CrossRefGoogle Scholar
  32. 32.
    Kenawy E-R, Abdel-Hay FI, El-Newehy MH, Wnek GE (2009) Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys 113(1):296–302CrossRefGoogle Scholar
  33. 33.
    Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomed 1(1):15–30CrossRefGoogle Scholar
  34. 34.
    Yu D-G, Zhu L-M, White K, Branford-White C (2009) Electrospun nanofiber-based drug delivery systems. Health 1:67–75CrossRefGoogle Scholar
  35. 35.
    Mondal D, Mollick MMR, Bhowmick B, Maity D, Bain MK, Rana D, Mukhopadhyay A, Dana K, Chattopadhyay D (2013) Effect of poly(vinyl pyrrolidone) on the morphology and physical properties of poly(vinyl alcohol)/sodium montmorillonite nanocomposite films. Prog Nat Sci 23(6):579–587CrossRefGoogle Scholar
  36. 36.
    Shukla R, Shukla S, Bivolarski V, Iliev I, Ivanova I, Goyal A (2011) Structural characterization of insoluble dextran produced by leuconostoc mesenteroides NRRL B-1149 in the presence of maltose. Food Technol Biotechnol 49(3):291–296Google Scholar
  37. 37.
    Fu Y, Li X, Sun C, Ren Z, Weng W, Mao C, Han G (2015) pH-triggered SrTiO3: Er nanofibers with optically monitored and controlled drug delivery functionality. Appl Mater Interfaces 7:25514–25521CrossRefGoogle Scholar
  38. 38.
    Zhang C, Yuan X, Wu L, Sheng J (2005) Drug-loaded ultrafine poly(vinyl alcohol) fibre mats prepared by electrospinning. e-Polymers 072:1–9Google Scholar
  39. 39.
    Shalmashi A, Eliassi A (2008) A solubility of salicylic acid in water, ethanol, carbon tetrachloride, ethyl acetate, and xylene. J Chem Eng Data 53:199–200CrossRefGoogle Scholar
  40. 40.
    Marano S, Barker SA, Raimi-Abraham BT, Missaghi S, Rajabi-Siahboomi A, Craig DQM (2016) Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning. Eur J Pharm Biopharm 103:84–94CrossRefGoogle Scholar
  41. 41.
    Martín A, Scholle K, Mattea F, Meterc D, Cocero MJ (2009) Production of polymorphs of ibuprofen sodium by supercritical antisolvent (SAS) precipitation. Cryst Growth Des 9(5):2504–2511CrossRefGoogle Scholar
  42. 42.
    Stephenson BC, Rangel-Yagui CO, Junior AP, Tavares LC, Beers K, Blankschtein D (2006) Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media. Langmuir 22:1514–1525CrossRefGoogle Scholar
  43. 43.
    Tang C, Ozcam AE, Stout B, Khan SA (2012) Effect of pH on protein distribution in electrospun PVA/BSA composite nanofibers. Biomacromolecules 13(5):1269–1278CrossRefGoogle Scholar
  44. 44.
    Son WK, Youk JH, Lee TS, Park WH (2005) Effect of pH on electrospinning of poly(vinyl alcohol). Mater Lett 59(12):1571–1575CrossRefGoogle Scholar
  45. 45.
    Dai M, Senecal A, Nugen SR (2014) Electrospun water-soluble polymer nanofibers for the dehydration and storage of sensitive reagents. Nanotechnology 25(22):225101CrossRefGoogle Scholar
  46. 46.
    Cantón I, Mckean R, Charnley M, Blackwood KA, Fiorica C, Ryan AJ, MacNeil S (2010) Development of an Ibuprofen-releasing biodegradable PLA/PGA electrospun scaffold for tissue regeneration. Biotechnol Bioeng 105:396–408CrossRefGoogle Scholar
  47. 47.
    AL-Janabi AAHS (2010) In vitro antibacterial activity of ibuprofen and acetaminophen. J Global Infect Dis 2(2):105–108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Neslihan Nohut Maslakci
    • 1
  • Seyhan Ulusoy
    • 2
  • Emre Uygun
    • 3
  • Halime Çevikbaş
    • 2
  • Lutfi Oksuz
    • 3
  • Hatice Kaplan Can
    • 4
  • Aysegul Uygun Oksuz
    • 1
  1. 1.Department of Chemistry, Faculty of Arts and ScienceSuleyman Demirel UniversityIspartaTurkey
  2. 2.Department of Biology, Faculty of Arts and ScienceSuleyman Demirel UniversityIspartaTurkey
  3. 3.Department of Physics, Faculty of ScienceSuleyman Demirel UniversityIspartaTurkey
  4. 4.Department of Chemistry, Faculty of ScienceHacettepe UniversityAnkaraTurkey

Personalised recommendations