Advertisement

Polymer Bulletin

, Volume 74, Issue 8, pp 3213–3228 | Cite as

Investigation of thermal, mechanical behavior, and contact angle measurements of poly(vinyl chloride) based nanocomposite films containing coated CuO nanoparticles with thiamine

  • Shadpour MallakpourEmail author
  • Soheila Mansourzadeh
Original Paper

Abstract

In this work, poly(vinyl chloride) (PVC)/CuO-VB1(vitamin B1) nanocomposite (NC) films were prepared by solution casting method. For this purpose, CuO nanoparticles (NPs) were chosen as an appropriate nano-filer to incorporate into the PVC matrix. To prevent aggregation and make NPs more compatible with the polymer matrix, surface modification of NPs was performed. Thiamine (vitamin B1) is a biological molecule used as a bio-safe modifier. Then, PVC/CuO-VB1 NCs were obtained by addition of different weight percentages (3, 5, and 7 wt%) of modified NPs into the PVC matrix under ultrasonic irradiation. The prepared NCs were examined using various techniques. The results confirmed that relative changes in the obtained data and morphology, as the concentration of nano-filler was increased. Furthermore, incorporating the NPs into PVC caused an increase in thermal stability of NCs as compared to neat PVC. FE-SEM and TEM morphological analysis showed good compatibility of modified CuO with the PVC matrix. The contact angle results verified that hydrophilicity of NCs increased by adding fillers into the polymer matrix. Finally, addition of NPs into the PVC matrix had influenced on optical absorption and mechanical behaviors of PVC.

Keywords

Nanocomposites Biological molecules Poly(vinyl chloride) Contact angle TEM micrographs 

Notes

Acknowledgements

This research was supported by the Research Affairs Division Isfahan University of Technology (IUT). Authors deliver their gratitude to the National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC) and Center of Excellency in Sensors and Green Chemistry Research (IUT) for their financial support.

References

  1. 1.
    Camargo PH, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mat Res 12(1):1–39. doi: 10.1590/S1516-14392009000100002 CrossRefGoogle Scholar
  2. 2.
    Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575. doi: 10.1177/0021998306067321 CrossRefGoogle Scholar
  3. 3.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49(15):3187–3204. doi: 10.1016/j.polymer.2008.04.017 CrossRefGoogle Scholar
  4. 4.
    Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261. doi: 10.1016/j.progpolymsci.2013.02.003 CrossRefGoogle Scholar
  5. 5.
    Huang NH, Wang JQ (2009) A new route to prepare nanocomposites based on polyvinyl chloride and MgAl layered double hydroxide intercalated with lauryl ether phosphate. Express Polym Lett 3:595–604. doi: 10.3144/expresspolymlett.2009.74 CrossRefGoogle Scholar
  6. 6.
    Deshmukh K, Khatake SM, Joshi GM (2013) Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J Polym Res 20(11):1–11. doi: 10.1007/s10965-013-0286-2 CrossRefGoogle Scholar
  7. 7.
    Abdul Nabi M, Yusop RM, Yousif E, Abdullah BM, Salimon J, Salih N, Zubairi SI (2014) Effect of nanoZnO on the optical properties of poly (vinyl chloride) films. Int J Polym Sci. doi: 10.1155/2014/697809 Google Scholar
  8. 8.
    Abu-Abdeen M (2012) Investigation of the rheological, dynamic mechanical, and tensile properties of single-walled carbon nanotubes reinforced poly (vinyl chloride). J App Polym Sci 124(4):3192–3199. doi: 10.1002/app.35061 CrossRefGoogle Scholar
  9. 9.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42(7):3301–3304. doi: 10.1016/S0032-3861(00)00741-2 CrossRefGoogle Scholar
  10. 10.
    Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R-Rep 53(3):73–197. doi: 10.1016/j.mser.2006.06.001 CrossRefGoogle Scholar
  11. 11.
    Ahamed M, Alhadlaq HA, Khan MA, Karuppiah P, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater. doi: 10.1155/2014/637858 Google Scholar
  12. 12.
    Gandhi S, Subramani RH, Ramakrishnan T, Sivabalan A, Dhanalakshmi V, Nair MG, Anbarasan R (2010) Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly (vinyl alcohol). J Mater Sci 45(6):1688–1694. doi: 10.1007/s10853-009-4158-4 CrossRefGoogle Scholar
  13. 13.
    Phiwdang K, Suphankij S, Mekprasart W, Pecharapa W (2013) Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia. 34:740–745. doi: 10.1016/j.egypro.2013.06.808 CrossRefGoogle Scholar
  14. 14.
    Li B (2000) A study of thermal degradation and decomposition of rigid poly (vinyl chloride) with metal oxides using thermogravimetry and cone calorimetry. Polym Degrad Stab 68(2):197–204. doi: 10.1016/S0141-3910(00)00002-1 CrossRefGoogle Scholar
  15. 15.
    Li Z, Zhu Y (2003) Surface-modification of SiO2 nanoparticles with oleic acid. Appl Surf Sci 211(1):315–320. doi: 10.1016/S0169-4332(03)00259-9 CrossRefGoogle Scholar
  16. 16.
    Owen MJ (2002) Coupling agents: chemical bonding at interfaces. Adhes Sci Eng 2:403–431. doi: 10.1016/B978-044451140-9/50009-3 Google Scholar
  17. 17.
    Taniguchi Y, Ogawa M, Gang W, Saitoh H, Fujiki K, Yamauchi T, Tsubokawa N (2008) Preparation of hyperfunctional carbon black by grafting of hyperbranched polyester onto the surface. Mater Chem Phys 108(2):397–402. doi: 10.1016/j.matchemphys.2007.10.013 CrossRefGoogle Scholar
  18. 18.
    Jeng JY, Liu JC, Jean JH (2007) Dispersion of oleate-modified CuO nanoparticles in a nonpolar solvent. J Am Ceram Soc 90(11):3676–3679. doi: 10.1111/j.1551-2916.2007.01958.x CrossRefGoogle Scholar
  19. 19.
    Ma SR, Shi LY, Feng X, Yu WJ, Lu B (2008) Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent. J Shanghai Univ (English Edition) 12:278–282. doi: 10.1007/s11741-008-0316-1 CrossRefGoogle Scholar
  20. 20.
    Thurman JE, Mooradian AD (1997) Vitamin supplementation therapy in the elderly. Drug Aging 11(6):433–449. doi: 10.2165/00002512-199711060-00003 CrossRefGoogle Scholar
  21. 21.
    Pérez-Ruiz T, Martínez-Lozano C, Sanz A, Guillén A (2004) Successive determination of thiamine and ascorbic acid in pharmaceuticals by flow injection analysis. J Pharm Biomed Anal 34(3):551–557. doi: 10.1016/S0731-7085(03)00606-X
  22. 22.
    Al-Ahmary KM (2014) A simple spectrophotometric method for determination of thiamine (vitamin B1) in pharmaceuticals. Eur J Chem 5(1):81–84. doi: 10.5155/eurjchem.5.1.81-84.881 CrossRefGoogle Scholar
  23. 23.
    Mallakpour S, Behranvand V (2014) Optical, mechanical, and thermal behavior of poly (vinyl alcohol) composite films embedded with biosafe and optically active poly (amide–imide)-ZnO quantum dot nanocomposite as a novel reinforcement. Colloid Polym Sci 292(11):2857–2867. doi: 10.1007/s00396-014-3327-4 CrossRefGoogle Scholar
  24. 24.
    Mallakpour S, Javadpour M (2016) The potential use of recycled PET bottle in nanocomposites manufacturing with modified ZnO nanoparticles capped with citric acid: preparation, thermal, and morphological characterization. RSC Adv 6(18):15039–15047. doi: 10.1039/C5RA27631D CrossRefGoogle Scholar
  25. 25.
    Baia M, Astilean S, Iliescu T (2008) Raman and SERS investigations of pharmaceuticals. Springer Science & Business MediaGoogle Scholar
  26. 26.
    Taylor R, Kennard O (1982) Crystallographic evidence for the existence of CH. cntdot.cntdot. cntdot. O, CH. cntdot.cntdot. cntdot. N and CH. cntdot.cntdot. cntdot. Cl hydrogen bonds. J Am Chem Soc 104(19):5063–5070. doi: 10.1021/ja00383a012 CrossRefGoogle Scholar
  27. 27.
    Arun KJ, Batra AK, Krishna A, Bhat K, Aggarwal MD, Francis JP (2015) Surfactant free hydrothermal synthesis of copper oxide nanoparticles. Am J Mater Sci 5(3A):36–38. doi: 10.5923/s.materials.201502.06 Google Scholar
  28. 28.
    Razavi RS, Loghman-Estarki MR (2012) Synthesis and characterizations of copper oxide nanoparticles within zeolite Y. J Cluster Sci 23(4):1097–1106. doi: 10.1007/s10876-012-0502-y CrossRefGoogle Scholar
  29. 29.
    Yang C, Xiao F, Wang J, Su X (2014) Synthesis and microwave modification of CuO nanoparticles: crystallinity and morphological variations, catalysis, and gas sensing. J Colloid Interface Sci 435:34–42. doi: 10.1016/j.jcis.2014.08.044 CrossRefGoogle Scholar
  30. 30.
    Beltran M, Marcilla A (1997) Fourier transform infrared spectroscopy applied to the study of PVC decomposition. Eur Polym J 33(7):1135–1142. doi: 10.1016/S0014-3057(97)00001-3 CrossRefGoogle Scholar
  31. 31.
    Elashmawi IS, Hakeem NA, Marei LK, Hanna FF (2010) Structure and performance of ZnO/PVC nanocomposites. Physica B Condens Matter 405(19):4163–4169. doi: 10.1016/j.physb.2010.07.006 CrossRefGoogle Scholar
  32. 32.
    Stromberg RR, Straus S, Achhammer BG (1958) Infrared spectra of thermally degraded poly (vinyl chloride). J Res Natl Bur Stand 60(2):147–152. doi: 10.6028/jres.060.018 CrossRefGoogle Scholar
  33. 33.
    Radhakrishnan AA, Beena BB (2014) Structural and optical absorption analysis of CuO nanoparticles. Ind J Adv Chem Sci 2:158–161Google Scholar
  34. 34.
    Krimm S, Folt VL, Shipman JJ, Berens AR (1963) Infrared spectra and assignments for polyvinyl chloride and deuterated analogs. J Polym Sci A 1(8):2621–2650. doi: 10.1002/pol.1963.100010809 Google Scholar
  35. 35.
    Hemalatha KS, Rukmani K, Suriyamurthy N, Nagabhushana BM (2014) Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: a composition dependent study. Mater Res Bull 51:438–446. doi: 10.1016/j.materresbull.2013.12.055 CrossRefGoogle Scholar
  36. 36.
    Hasan M, Kumar R, Barakat MA, Lee M (2015) Synthesis of PVC/CNT nanocomposite fibers using a simple deposition technique for the application of Alizarin Red S (ARS) removal. RSC Adv 5(19):14393–14399. doi: 10.1039/C4RA16043F CrossRefGoogle Scholar
  37. 37.
    Sterky K, Jacobsen H, Jakubowicz I, Yarahmadi N, Hjertberg T (2010) Influence of processing technique on morphology and mechanical properties of PVC nanocomposites. Eur Polym J 46(6):1203–1209. doi: 10.1016/j.eurpolymj.2010.03.021 CrossRefGoogle Scholar
  38. 38.
    Sahooli M, Sabbaghi S, Saboori R (2012) Synthesis and characterization of mono sized CuO nanoparticles. Mater Lett 81:169–172. doi: 10.1016/j.matlet.2012.04.148 CrossRefGoogle Scholar
  39. 39.
    Mallakpour S, NezamzadehEzhieh A (2015) A simple and environmentally friendly method for surface modification of ZrO2 nanoparticles by biosafe citric acid as well as ascorbic acid (vitamin C) and its application for the preparation of poly (vinyl chloride) nanocomposite films. Polym Compos. doi: 10.1002/pc.23746 Google Scholar
  40. 40.
    Park SH, Lee WJ (2015) Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries. Sci Rep 5:1–13. doi: 10.1038/srep09754 Google Scholar
  41. 41.
    Deshmukh K, Joshi GM (2014) Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites. Polym Test 34:211–219. doi: 10.1016/j.polymertesting.2014.01.015 CrossRefGoogle Scholar
  42. 42.
    Liu C, Luo YF, Jia ZX, Zhong BC, Li SQ, Guo BC, Jia DM (2011) Enhancement of mechanical properties of poly (vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. Express Polym Lett 5(7):591–603. doi: 10.3144/expresspolymlett.2011.58 CrossRefGoogle Scholar
  43. 43.
    Van Krevelen DW (1976) Properties of Polymers: Their Estimation and Correlation with Chemical Structure. Elsevier Scientific PublicationGoogle Scholar
  44. 44.
    Huang C, Yang X, Lu L, Wang X (2006) Flame retardant property of nanopowder aerosols toward methane. Chem Pap 60(2):102–110. doi: 10.2478/s11696-006-0019-7 CrossRefGoogle Scholar
  45. 45.
    Liu YL, Chiu YC, Chen TY (2003) Phosphorus-containing polyaryloxydiphenylsilanes with high flame retardance arising from a phosphorus–silicon synergistic effect. Polym Int 52(8):1256–1261. doi: 10.1002/pi.1179 CrossRefGoogle Scholar
  46. 46.
    Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, USAGoogle Scholar
  47. 47.
    Ayaz S, Ishaq M, Saeed K, Ahmed I, Khalil NK (2015) Investigation of thermal, mechanical and electrochemical properties of nanocomposites based on CuO modified poly (vinyl chloride)/poly (methyl methacrylate) blend. J Vinyl Addit Technol. doi: 10.1002/vnl.21488 Google Scholar
  48. 48.
    Lee HJ, Park K (2016) Variable wettability control of a polymer surface by selective ultrasonic imprinting and hydrophobic coating. Colloid Polym Sci 294(9):1413–1423. doi: 10.1007/s00396-016-3902-y CrossRefGoogle Scholar
  49. 49.
    Thomas SP, Thomas S, Abraham R, Bandyopadhyay S (2008) Polystyrene/calcium phosphate nanocomposites: contact angle studies based on water and methylene iodide. Express Polym Lett 2(7):528–538. doi: 10.3144/expresspolymlett.2008.63 CrossRefGoogle Scholar
  50. 50.
    Mahto SK, Das S, Ranjan A, Singh SK, Roy P, Misra N (2015) Chemical modification of poly (vinyl chloride) for blood and cellular biocompatibility. RSC Adv 5(56):45231–45238. doi: 10.1039/C5RA03362D Google Scholar
  51. 51.
    Asadinezhad A, Lehocký M, Sáha P, Mozetič M (2012) Recent progress in surface modification of polyvinyl chloride. Materials 5(12):2937–2959. doi: 10.3390/ma5122937 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Organic Polymer Chemistry Research Laboratory, Department of ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  2. 2.Nanotechnology and Advanced Materials InstituteIsfahan University of TechnologyIsfahanIslamic Republic of Iran
  3. 3.Department of Chemistry, Center of Excellence in Sensors and Green ChemistryIsfahan University of TechnologyIsfahanIslamic Republic of Iran

Personalised recommendations