Advertisement

Polymer Bulletin

, Volume 74, Issue 6, pp 2391–2399 | Cite as

Syntheses and thermal properties of polyesters bearing a carbosilane repeating unit

  • Ayumu Karimata
  • Kozo Matsumoto
  • Takeshi EndoEmail author
Original Paper
  • 176 Downloads

Abstract

New polyesters bearing a carbosilane repeating unit (–C–Si(CH3)2–C–), 1a and 1b, and reference polyesters with the corresponding carbon-based units 2a and 2b were synthesized and evaluated to study the effect of the carbosilane segment on their thermal properties. DSC analysis revealed that 1a and 1b exhibited glass transition temperatures (T g) of −72.6 and 11.6 °C, respectively, which were lower than those of 2a and 2b (–53.2 °C for 2a and 63.6 °C for 2b), indicating that the substitution of carbon atoms on polyester backbone with silicone atoms is effective method to change the T g of polyesters. Furthermore, 1a and 1b showed good thermal stability (T d5 = 304 °C for 1a and 309 °C for 2a). These results indicate that carbosilane segment may be a promising soft segment for developing new polyester-based materials.

Keywords

CDCl3 Nuclear Magnetic Resonance Differential Scanning Calorimetry Soft Segment Thermo Gravimetric Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by JSR Co., Ltd.

Supplementary material

289_2016_1834_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2242 kb)

References

  1. 1.
    Wicks ZW, Jones FN, Pappas SP, Wicks DA (2007) Organic coatings: science and technology, chapter 10, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Ihre H, Hult A, Soderlind E (1996) Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2,2-bis (hydroxymethyl) propionic acid and 1,1,1-tris(hydroxyphenyl)ethane. J Am Chem Soc 118:6388–6395. doi: 10.1021/ja954171t CrossRefGoogle Scholar
  3. 3.
    Ihre H, Hult A, Fréchet JMJ, Gitsov I (1998) Double-stage convergent approach for the synthesis of functionalized dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid. Macromolecules 31:4061–4068. doi: 10.1021/ma9718762 CrossRefGoogle Scholar
  4. 4.
    Malkoch M, Malmström E, Hult A (2002) Rapid and efficient synthesis of aliphatic ester dendrons and dendrimers. Macromolecules 35:8307–8314. doi: 10.1021/ma0205360 CrossRefGoogle Scholar
  5. 5.
    Gillies E, Fréchet J (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43. doi: 10.1016/S1359-6446(04)03276-3 CrossRefGoogle Scholar
  6. 6.
    Parrott MC, Marchington EB, Valliant JF, Adronov A (2005) Synthesis and properties of carborane-functionalized aliphatic polyester dendrimers. J Am Chem Soc 127:12081–12089. doi: 10.1021/ja053730l CrossRefGoogle Scholar
  7. 7.
    Ma X, Zhou Z, Jin E, Sun Q, Zhang B, Tang J, Shen Y (2013) Facile synthesis of polyester dendrimers as drug delivery carriers. Macromolecules 46:37–42. doi: 10.1021/ma301849a CrossRefGoogle Scholar
  8. 8.
    Lendlein A, Kelch S (2002) Shape-memory effect from temporary shape to permanent shape. Angew Chem Int Ed 41:2034–2057. doi: 10.1002/1521-3773(20020617)41:12<2034:AID-ANIE2034>3.0.CO;2-M CrossRefGoogle Scholar
  9. 9.
    Ratna D, Karger KJ (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269. doi: 10.1007/s10853-007-2176-7 CrossRefGoogle Scholar
  10. 10.
    Zhu G, Liang G, Xu Q, Yu Q (2003) Shape-memory effect of radiation crosslinked poly(e-caprolactone). J Appl Polym Sci 90:1589–1595. doi: 10.1002/app.12736 CrossRefGoogle Scholar
  11. 11.
    Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410. doi: 10.1002/adma.200904447 CrossRefGoogle Scholar
  12. 12.
    Zhang L, Xiong C, Deng X (1995) Biodegradable polyester blends for biomedical application. J Appl Polym Sci 56:103–112. doi: 10.1002/app.1995.070560114 CrossRefGoogle Scholar
  13. 13.
    Höglund A, Odelius K, Hakkarainen M, Albertsson AC (2007) Controllable degradation product migration from cross-linked biomedical polyester-ethers through predetermined alterations in copolymer composition. Biomacromolecules 8:2025–2032. doi: 10.1021/bm070292x CrossRefGoogle Scholar
  14. 14.
    Hillmyer MA, Tolman WB (2014) Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc Chem Res 47:2390–2396. doi: 10.1021/ar500121d CrossRefGoogle Scholar
  15. 15.
    Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155. doi: 10.1016/j.progpolymsci.2008.10.002 CrossRefGoogle Scholar
  16. 16.
    Holland SJ, Tighe BJ, Gould PL (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J Control Release 4:155–180. doi: 10.1016/0168-3659(86)90001-5 CrossRefGoogle Scholar
  17. 17.
    Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144. doi: 10.1002/(SICI)1097-0126(1998100)47:2<89:AID-PI86>3.0.CO;2-F CrossRefGoogle Scholar
  18. 18.
    Jones RG, Wataru A, Julian C (2000) Silicon-containing polymers, chapter 10. Kluwer Academic Publishers, The Netherlands, pp 247–321CrossRefGoogle Scholar
  19. 19.
    Birot M, Pillot JP, Dunogues J (1995) Comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics. Chem Rev 95:1443–1477. doi: 10.1021/cr00037a014 CrossRefGoogle Scholar
  20. 20.
    Putzien S, Nuyken O, Kühn FE (2010) Functionalized polysilalkylene siloxanes (polycarbosiloxanes) by hydrosilylation—catalysis and synthesis. Prog Polym Sci 35:687–713CrossRefGoogle Scholar
  21. 21.
    Interrante LV, Rathore JS (2010) Cyclolinear polycarbosilanes—a recent addition to the class of organosilicon polymers. Dalton Trans 39:9193–9202. doi: 10.1039/C0DT00142B Google Scholar
  22. 22.
    Kim D, Joung S, Kim J, Chang S (2015) Metal-free hydrosilylation polymerization by borane catalyst. Angew Chem Int Ed 54:14805–14809. doi: 10.1002/ange.201507863 CrossRefGoogle Scholar
  23. 23.
    Rittscher V, Gallei M (2015) A convenient synthesis strategy for microphase-separating functional copolymers: the cyclohydrocarbosilane tool box. Polym Chem 6:5653–5662. doi: 10.1039/C5PY00065C CrossRefGoogle Scholar
  24. 24.
    Matsumoto K, Shimazu H, Deguchi M, Yamaoka H (1997) Anionic ring-opening polymerization of silacyclobutane derivatives. J Polym Sci Part A Polym Chem 35:3207–3216. doi: 10.1002/(SICI)1099-0518(19971115)35:15<3207:AID-POLA13>3.0.CO;2-F CrossRefGoogle Scholar
  25. 25.
    Matsumoto K, Deguchi M, Nakano H, Yamaoka H (1998) Synthesis of carbosilane block copolymers by means of a living anionic polymerization of 1,1-diethylsilacyclobutane. J Polym Sci Part A Polym Chem 36:2699–2706. doi: 10.1002/(SICI)1099-0518(19981115)36:15<2699:AID-POLA4>3.0.CO;2-N CrossRefGoogle Scholar
  26. 26.
    O’Malley J, Stauffer WJ (1977) Morphology and properties of crystalline polyester-siloxane block copolymers. Polym Eng Sci 17:510–514. doi: 10.1002/pen.760170805 CrossRefGoogle Scholar
  27. 27.
    O’Malley J, Pacansky TJ, Stauffer W (1977) Synthesis and characterization of poly(hexamethylene sebacate)-poly(dimethylsiloxane) block copolymers. Macromolecules 10:1197–1199. doi: 10.1021/ma60060a007 CrossRefGoogle Scholar
  28. 28.
    Demejo LP, Rimai DS, Bowen RC (1988) Direct observations of deformations resulting from particle-substrate adhesion. J Adhes Sci Technol 2:331–337. doi: 10.1163/156856188X00336 CrossRefGoogle Scholar
  29. 29.
    Matsukawa K, Inoue H (1990) Synthesis of aromatic polyester-siloxanes using 1,3-bis(p-hydroxyphenyl) disiloxanes as diol components. J Polym Sci Part C Polym Lett 28:13–19. doi: 10.1002/pol.1990.140280103 CrossRefGoogle Scholar
  30. 30.
    Antic VV, Balaban MR, Djonlagic J (2001) Synthesis and characterization of thermoplastic poly(ester-siloxane)s. Polym Int 50:1201–1208. doi: 10.1002/pi.764 CrossRefGoogle Scholar
  31. 31.
    Rosa VM, Felisberti MI (2001) Unsaturated polyester resin modified with poly(organosiloxanes). I. Preparation, dynamic mechanical properties, and impact resistance. J Appl Polym Sci 81:3272–3279. doi: 10.1002/app.1783 CrossRefGoogle Scholar
  32. 32.
    He J, Zhou L, Soucek MD, Wollyung KM, Wesdemiotis C (2007) UV-curable hybrid coatings based on vinylfunctionlized siloxane oligomer and acrylated polyester. J Appl Polym Sci 105:2376–2386. doi: 10.1002/app.25709 CrossRefGoogle Scholar
  33. 33.
    Burke DJ, Kawauchi T, Kade MJ, Leibfarth FA, Mcdearmon B, Wol M, Kierstead PH, Moon B, Hawker CJ (2012) Ketene-based route to rigid cyclobutanediol monomers for the replacement of BPA in high performance polyester. ACS Macro lett 1:1228–1232. doi: 10.1021/mz300497m CrossRefGoogle Scholar
  34. 34.
    Kim J, Lee G, Lee J (2008) Preparation and nonlinear optical properties of novel Y-type polyesters with highly enhanced thermal stability of second harmonic generation. Eur Polym J 44:1814–1821. doi: 10.1016/j.eurpolymj.2008.03.003 CrossRefGoogle Scholar
  35. 35.
    Hoppens NC, Hudnall TW, Foster A, Booth CJ (2004) Aliphatic–aromatic copolyesters derived from 2,2,4,4-tetramethyl-1,3-cyclobutanediol. J Polym Sci Part A Polym Chem 42:3473–3478. doi: 10.1002/pola.20197 CrossRefGoogle Scholar
  36. 36.
    Whitney JM, Parnes JS, Shea KJ (1997) Total synthesis of a Plocamium monoterpene marine natural product. Synthetic applications of bridgehead allylsilanes. J Org Chem 62:8962–8963. doi: 10.1021/jo971580u CrossRefGoogle Scholar
  37. 37.
    Evangelisti C, Klapötke TM, Krumm B, Nieder A, Berger RJF, Hayes SA, Mitzel NW, Troegel D, Tacke R (2010) Sila-substitution of alkyl nitrates: synthesis, structural characterization, and sensitivity studies of highly explosive (nitratomethyl)-, bis(nitratomethyl)-, and tris(nitratomethyl)silanes and their corresponding carbon analogues. Inorg Chem 49:4865–4880. doi: 10.1021/ic902387y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Molecular Engineering InstituteKindai UniversityIizukaJapan
  2. 2.Department of Biological and Environmental ChemistryKindai UniversityIizukaJapan

Personalised recommendations