Polymer Bulletin

, Volume 74, Issue 3, pp 671–688 | Cite as

Synthesis, characterisation and flame, thermal and electrical properties of poly (n-butyl methacrylate)/titanium dioxide nanocomposites

  • K. Suhailath
  • M. T. Ramesan
  • B. Naufal
  • P. Periyat
  • V. C. Jasna
  • P. Jayakrishnan
Original Paper


Nanocomposites based on poly (n-butyl methacrylate) (PBMA) with various concentrations of titanium dioxide (TiO2) nanoparticles were synthesised by in situ free radical polymerisation method. The formation of nanocomposite was characterised by FTIR, UV, XRD, DSC, TGA, impedance analyser and flame retardancy measurements. FTIR and UV spectrum ascertained the intermolecular interaction between nanoparticles and the polymer chain. The XRD studies indicated that the amorphous region of PBMA decreased with the increase in content of metal oxide nanoparticles. The SEM revealed the uniform dispersion of nanoparticles in the polymer composite. The DSC and TGA studies showed that the glass transition temperature and thermal stability of the nanocomposites were increased with the increase in the concentration of nanoparticles. The conductivity and dielectric properties of nanocomposites were higher than pure PBMA and the maximum electrical property was observed for the sample with 7 wt% TiO2. As the concentration of nanoparticles increased above 7 wt%, the electrical property of nanocomposite was decreased owing to the agglomeration of nanoparticles in the polymer. Nanoparticles could impart better flame retardancy to PBMA/TiO2 composite and the flame resistance of the materials improved with the addition of nanoparticles in the polymer matrix.


Poly (n-butyl methacrylate) Titanium dioxide Nanocomposite Crystallinity Thermal properties Flame retardancy Electrical properties 



The authors wish to thank Prof. P. P. Pradyumnan, Department of Physics, University of Calicut, for providing the necessary facilities at the department.


  1. 1.
    Faucheu J, Gauthier C, Chazeau L, Cavaille JY, Mellon VR, Lami EB (2010) Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: short review and recent advances. Polymer 51:6–17. doi: 10.1016/j.polymer.2009.11.044 CrossRefGoogle Scholar
  2. 2.
    Ma JZ, Hu J, Zhang ZJ (2007) Polyacrylate/silica nanocomposite materials prepared by sol–gel process. Eur Polym J 43:4169–4177. doi: 10.1016/j.eurpolymj.2007.06.051 CrossRefGoogle Scholar
  3. 3.
    Ramesan MT (2014) Dynamic mechanical properties, magnetic and electrical behavior of iron oxide/ethylene vinyl acetate nanocomposites. Polym Comp 35:1989–1996. doi: 10.1002/pc.22858 CrossRefGoogle Scholar
  4. 4.
    Faghihi K, Shabani F, Shabanian M (2011) Synthesis of new poly (ether-imide) nanocomposite containing bicyclo segments by solution intercalation. J Macromol Sci, Pure Appl Chem 48:381–386. doi: 10.1080/10601325.2011.562733 CrossRefGoogle Scholar
  5. 5.
    Ou B, Li D, Liu Q, Zhou Z, Chen G, Liu P (2012) Preparation of conductive polyaniline/functionalized titanium dioxide nanocomposites via graft polymerization. J Macromol Sci Pure Appl Chem 49:149–153. doi: 10.1080/10601325.2012.642212 CrossRefGoogle Scholar
  6. 6.
    Jayakrishnan P, Ramesan MT (2014) Synthesis, characterization and electrical properties of Fe3O4/poly (vinyl alcohol-co-acrylic acid) nanocomposites. AIP Conf Proc 1620:165–172. doi: 10.1063/1.4898235 CrossRefGoogle Scholar
  7. 7.
    Najar MH, Majid KJ (2013) Synthesis, characterization, electrical and thermal properties of nanocomposite of polythiophene with nanophotoadduct: a potent composite for electronic use. Mater Sci Mater Electron 24:4332–4339. doi: 10.1007/s10854-013-1407-8 CrossRefGoogle Scholar
  8. 8.
    Radoicic M, Saponjic Z, Marjanovic GC, Konstantinovic Z, Mitric M, Nedeljkovic J (2012) Ferromagnetic polyaniline/TiO2 nanocomposites. Polym Comp 33:1482–1493. doi: 10.1002/pc.22278 CrossRefGoogle Scholar
  9. 9.
    Zhang W, Song N, Guan LX, Li F, Yao MM (2016) Photocatalytic degradation of formaldehyde by nanostructured TiO2 composite films. J Exp Nanosci 11:185–196. doi: 10.1080/17458080.2015.1043657 CrossRefGoogle Scholar
  10. 10.
    Trang TT, Lee DK, Kim JH (2013) Enhancing the ionic transport of PEO-based composite polymer electrolyte by addition of TiO2 nanofiller for quasi-solid state dye-sensitized solar cells. Met Mater Int 19:1369–1372. doi: 10.1007/s12540-013-0643-z CrossRefGoogle Scholar
  11. 11.
    Sadr FA, Montazer M (2014) In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrason Sonochem 21:681–691. doi: 10.1016/j.ultsonch.2013.09.018 CrossRefGoogle Scholar
  12. 12.
    See YK, Cha J, Chang T, Ree M (2000) Glass transition temperature of poly(tert-butyl methacrylate) Langmuir-Blodgett film and spin-coated film by X-ray reflectivity and ellipsometry. Langmuir 16:2351–2355. doi: 10.1021/la991074v CrossRefGoogle Scholar
  13. 13.
    Wang Y, Li Y, Zhang R, Huang L, He W (2006) Synthesis and characterization of nanosilica/polyacrylate composite latex. Polym Comp 27:282–288. doi: 10.1002/pc.20200 CrossRefGoogle Scholar
  14. 14.
    Ramesan MT (2015) Poly (ethylene-co-vinyl acetate)/magnetite nanocomposites: interaction of some liquid fuels, thermal and oil resistance studies. Polym Polym Compos 23:85–92. doi: 10.1007/s10973-010-1162-5 Google Scholar
  15. 15.
    Wang L, Zhang L, Tian M (2012) Improved polyvinylpyrrolidone (PVP)/graphite nanocomposites by solution compounding and spray drying. Polym Adv Technol 23:652–659. doi: 10.1002/pat.1940 CrossRefGoogle Scholar
  16. 16.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. doi: 10.1021/cr0500535 CrossRefGoogle Scholar
  17. 17.
    Fang Z, Kennedy JP (2002) Novel block ionomers. I. Synthesis and characterization of polyisobutylene-based block anionomers. J Polym Sci Part A Polym Chem 40:3662–3678. doi: 10.1002/pola.10333 CrossRefGoogle Scholar
  18. 18.
    Lipatov YS, Alekseeva TT, Sorochinskaya LA, Dudarenko GV (2008) Confinement effects on the kinetics of formation of sequential semi-interpenetrating polymer networks. Polym Bull 59:739–747. doi: 10.1007/S00289-007-0814-5 CrossRefGoogle Scholar
  19. 19.
    Kiselev A, Andersson M, Mattson A, Shchukarev A, Sjoberg S, Palmqvist A, Osterlund L (2005) Solar light decomposition of DFP on the surface of anatase and rutile TiO2 prepared by hydrothermal treatment of microemulsions. Surf Sci 584:98–105. doi: 10.1016/j.susc.2005.01.064 CrossRefGoogle Scholar
  20. 20.
    Wang G (2011) Synthesis of poly(n-butyl acrylate) homopolymers by activators generated by electron transfer (AGET) ATRP using FeCl3·6H2O/succinic acid catalyst. Iran Polym J 20:931–938Google Scholar
  21. 21.
    Ramesan MT (2015) Processing characteristics and mechanical and electrical properties of chlorinated styrene butadiene rubber/fly ash composites. J Thermoplast Compos Mater 28:1286–1300. doi: 10.1177/0892705713505611 CrossRefGoogle Scholar
  22. 22.
    Begum M, Siddaramaiah (2004) Synthesis and characterization of polyurethane/polybutyl methacrylate interpenetrating polymer networks. J Mater Sci 39:4615–4623CrossRefGoogle Scholar
  23. 23.
    Ramesan MT (2014) Flammability, oil resistance and interaction of petroleum fuels with dichlorocarbene modified styrene butadiene rubber/fly ash composites. Petrol Sci Technol 32:1775–1783. doi: 10.1080/10916466.2012.662254 CrossRefGoogle Scholar
  24. 24.
    Subburaj M, Ramesan MT, Pradyumnan PP (2014) Preparation, characterization and conductivity studies of chlorinated natural rubber. AIP Conf Proc 1620:541–548. doi: 10.1063/1.4898294 CrossRefGoogle Scholar
  25. 25.
    Ramesan MT (2013) Synthesis and characterization of magnetoelectric nanomaterial composed of Fe3O4 and polyindole. Adv Polym Tech 32:928–934. doi: 10.1002/adv.21362 CrossRefGoogle Scholar
  26. 26.
    Dahiya HS, Kishore N, Mehra RM (2007) Effect of percolation on electrical and dielectric properties of acrylonitrile butadiene styrene/graphite composite. J Appl Polym Sci 106:2101–2110. doi: 10.1002/app.26896 CrossRefGoogle Scholar
  27. 27.
    Ramesan MT (2013) Synthesis, characterization and conductivity studies of polypyrrole/copper sulfide nanocomposites. J Appl Polym Sci 128:1540–1546. doi: 10.1002/app.38304 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • K. Suhailath
    • 1
  • M. T. Ramesan
    • 1
  • B. Naufal
    • 1
  • P. Periyat
    • 1
  • V. C. Jasna
    • 1
  • P. Jayakrishnan
    • 1
  1. 1.Department of ChemistryUniversity of Calicut, Calicut University P.O.MalappuramIndia

Personalised recommendations