Polymer Bulletin

, Volume 74, Issue 2, pp 445–464 | Cite as

Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2-based particles

  • Taťana Vacková
  • Jaroslav Kratochvíl
  • Aleksandra Ostafinska
  • Sabina Krejčíková
  • Martina Nevoralová
  • Miroslav Slouf
Original Paper


Crystallization kinetics of polycaprolactone (PCL) filled with TiO2-based particles (TiX) was shown to depend on the TiX particle type and concentration, which were associated with a slight polymer matrix degradation. The partially degraded, shorter, and more mobile polymer chains increased the overall crystallization rate at the initial stage of crystallization, while at the later stages, the non-nucleating TiX particles acted as a sterical hindrance, slowing down the crystallization process. The PCL/TiX composites were prepared by melt-mixing and contained 2.5 and 5 wt% of the filler. The investigated TiX particles included isometric anatase microparticles (mTiO2) and titanate nanotubes with high-aspect ratio (TiNT). Light and electron microscopy showed very homogeneous dispersion of the mTiO2 particles in the PCL matrix, while the TiNT formed large agglomerates. In situ polarized light microscopy displayed faster isothermal crystallization of all PCL/TiX composites, but the micrographs indicated that the TiX particles did not act as nucleation centres. Isothermal DSC experiments, evaluated in terms of Avrami theory, confirmed the PLM results and showed that the overall rate of isothermal crystallization increased in the following order: PCL <PCL/TiNT <PCL/mTiO2. Non-isothermal DSC and rheological measurements revealed the correlation between the crystallization rate and the polymer matrix degradation—the well-dispersed mTiO2 particles with high specific surface caused the highest PCL degradation and, consequently, the earliest start of non-isothermal crystallization as well as the fastest isothermal crystallization. Microindentation hardness measurements confirmed that the partial degradation of the polymer matrix did not have a significant impact on the mechanical performance of PCL/mTiO2 composites.


Crystallization Rate Crystallization Kinetic Isothermal Crystallization Titanate Nanotubes Micromechanical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank for the financial support of the Czech Science Foundation (Project No. GA 14-17921S). Electron microscopy at the Institute of Macromolecular Chemistry was supported by projects TE01020118 (Technology Agency of the CR) and POLYMAT LO1507 (Ministry of Education, Youth and Sports of the CR, program NPU I). The authors would like to thank to Tomáš Vystavěl from FEI Company for advanced SEM study (Fig. 3b, c).


  1. 1.
    Jana RN, Im C (2009) Isothermal crystallization behavior of poly(ε-caprolactone) diol/functionalized-multiwalled carbon nanotube composites. Int J Polym Anal Charact 14:418–436. doi: 10.1080/10236660903031074 CrossRefGoogle Scholar
  2. 2.
    Jenkins MJ, Harrison KL (2006) The effect of molecular weight on the crystallization kinetics of polycaprolacton. Polym Adv Technol 17:474–478. doi: 10.1002/pat.733 CrossRefGoogle Scholar
  3. 3.
    Albertsson AC, Varma IK (2002) Aliphatic polyesters: synthesis, properties and applications. Adv Polym Sci 157:1–40. doi: 10.1007/3-540-45734-8_1 CrossRefGoogle Scholar
  4. 4.
    Wei Z, Wang G, Wang P, Liu L, Qi M (2012) Crystallization behavior of poly(ε-caprolactone)/TiO2 nanocomposites obtained by in situ polymerization. Polym Eng Sci 52:1047–1057. doi: 10.1002/pen.22165 CrossRefGoogle Scholar
  5. 5.
    Wang XL, Huang FY, Zhou Y, Wang YZ (2009) Nonisothermal crystallization kinetics of poly(ε-caprolactone)/montmorillonite nanocomposites. J Macromol Sci Part B Physics 48:710–722. doi: 10.1080/00222340902959420 CrossRefGoogle Scholar
  6. 6.
    Wang GS, Wei ZY, Sanga L, Chen GY, Zhang WX, Dong XF, Qi M (2013) Morphology, crystallization and mechanical properties of poly(ε-caprolactone)/graphene oxide nanocomposties. Chin J Polym Sci 31:1148–1160. doi: 10.1007/s10118-013-1278-8 CrossRefGoogle Scholar
  7. 7.
    Meng B, Tao J, Deng J, Wu Z, Yang M (2011) Toughening of polylactide with higher loading of nano-titania particles coated by poly(ε-caprolactone). Mater Lett 65:729–732. doi: 10.1016/j.matlet.2010.11.029 CrossRefGoogle Scholar
  8. 8.
    Wu D, Wu L, Sun Y, Zhang M (2007) Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly(ε-caprolactone) composites. J Polym Sci, Part B: Polym Phys 45:3137–3147. doi: 10.1002/polb.21309 CrossRefGoogle Scholar
  9. 9.
    Liu Q, Chen D (2008) Viscoelastic behaviors of poly(ε-caprolactone)/attapulgite nanocomposites. Eur Polym J 44:2046–2050. doi: 10.1016/j.eurpolymj.2008.04.035 CrossRefGoogle Scholar
  10. 10.
    Zhuravlev E, Wurma A, Pötschke P, Androsch R, Schmelzer JWP, Schick C (2014) Kinetics of nucleation and crystallization of poly(ε-caprolactone)—multiwalled carbon nanotube composites. Europ Polym J 52:1–11. doi: 10.1016/j.eurpolymj.2013.12.015 CrossRefGoogle Scholar
  11. 11.
    Luduena LN, Vazquez A, Alvarez AV (2013) Effect of the type of clay organo-modifier on the morphology, thermal/mechanical/impact/barrier properties and biodegradation in soil of polycaprolactone/clay nanocomposites. J Appl Polym Sci 128:2648–2657. doi: 10.1002/app.38425 CrossRefGoogle Scholar
  12. 12.
    Hua L, Kai W, Inoue Y (2007) Crystallization behavior of poly(ε-caprolactone)/graphite oxide composites J Appl Polym Sci 106:4225–4232. doi: 10.1002/app.26976
  13. 13.
    Gupta KK, Kundan A, Mishra PK, Srivastava P, Mohanty S, Singh NK, Mishrad A, Maiti P (2012) Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases. Phys Chem Chem Phys 14:12844–12853. doi: 10.1039/c2cp41789h CrossRefGoogle Scholar
  14. 14.
    Králová D, Neykova N, Šlouf M (2008) Preparation of titanate nanotubes and their polymer composites. In: Richter S, Schwedt A (eds) EMC 2008, vol 2., Materials ScienceSpringer, Berlin, pp 765–766. doi:  10.1007/978-3-540-85226-1_1
  15. 15.
    Králová D, Šlouf M, Klementová M, Kužel R, Kelnar I (2010) Preparation of gram quantities of high-quality titanate nanotubes and their composites with polyamide 6. Mater Chem Phys 124:652–657. doi: 10.1016/j.matchemphys.2010.07.029 CrossRefGoogle Scholar
  16. 16.
    Šlouf M, Králová D, Kruliš Z (2010) Nanotrubky na bázi oxidu titaničitého a způsob jejich přípravy (in Czech). CZ 302299, Czech PatentGoogle Scholar
  17. 17.
    Saeed K, Park S-Y (2007) Preparation and properties of multiwalled carbon nanotube/polycaprolactone nanocomposites. J Appl Polym Sci 104:1957–1963. doi: 10.1002/app.25902 CrossRefGoogle Scholar
  18. 18.
    Mikešová J, Šlouf M, Gohs U, Popelková D, Vacková T, Vu NH, Kratochvíl J, Zhigunov A (2014) Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym Bull 71:795–818. doi: 10.1007/s00289-013-1093-y CrossRefGoogle Scholar
  19. 19.
    NiS-Elements Ar (2012) User manual version 4.10.03, Laboratory imaging, Prague.
  20. 20.
    Boughorbel F, Zhuge X, Potocek P, Lich B (2012) SEM 3D reconstruction of stained bulk samples using landing energy variation and deconvolution. Microsc Microanal 18:560–561. doi: 10.1017/S1431927612004655 CrossRefGoogle Scholar
  21. 21.
    Avrami M (1939) Kinetics of phase change. I. J Chem Phys 7:1103–1112. doi: 10.1063/1.1750380 CrossRefGoogle Scholar
  22. 22.
    Avrami M (1940) Kinetics of phase change. II. Ibid. J Chem Phys 8:212–224. doi: 10.1063/1.1750631 CrossRefGoogle Scholar
  23. 23.
    Avrami M (1941) Kinetics of phase change. III. Ibid. J Chem Phys 9:177–184. doi: 10.1063/1.1750872 CrossRefGoogle Scholar
  24. 24.
    Schultz JM (2001) Polymer crystallization. The development of crystalline order in thermoplastic polymer. Oxford University Press, New YorkGoogle Scholar
  25. 25.
    Guo Q, Groenincky G (2001) Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone). Polymer 42:8647–8655. doi: 10.1016/S0032-3861(01)00348-2 CrossRefGoogle Scholar
  26. 26.
    Delgado-Lima A, Botelho G, Silva MM, Machado AV (2013) Durability of PCL nanocomposites under different environments. J Polym Environ 21:710–717. doi: 10.1007/s10924-013-0585-z CrossRefGoogle Scholar
  27. 27.
    Muñoz-Bonilla A, Cerrada ML, Fernández-García M, Kubacka A, Ferrer M, Fernández-García M (2013) Biodegradable polycaprolactone-titania nanocomposites: preparation, characterization and antimicrobial properties. Int J Mol Sci 14:9249–9266. doi: 10.3390/ijms14059249 CrossRefGoogle Scholar
  28. 28.
    Wang G, Chen G, Wei Z, Yu T, Liu L, Wang P, Chang Y, Qi M (2012) A comparative study of TiO2 and surface-treated TiO2 nanoparticles on thermal and mechanical properties of poly(ε-caprolactone) nanocomposites. J Appl Polym Sci 125:3871–3879. doi: 10.1002/app.36720 CrossRefGoogle Scholar
  29. 29.
    Sperling LH (1992) Introduction to physical polymer science. John Wiley & Sons, London, pp 232–235Google Scholar
  30. 30.
    Slouf M, Krejcikova S, Vackova T, Kratochvil J, Novak L (2015) In situ observation of nucleated polymer crystallization in polyoxymethylene sandwich composites. Front Mater 2:23. doi: 10.3389/fmats.2015.00023 CrossRefGoogle Scholar
  31. 31.
    Slouf M, Vackova T, Zhigunov A, Sikora A, Piorkowska E (2016) Nucleation of polypropylene crystallization with gold nanoparticles. Part 2: relation between particle morphology and nucleation activity. J Macromol Sci, Phys 55:393–410. doi: 10.1080/00222348.2016.1153402 CrossRefGoogle Scholar
  32. 32.
    Mandelkern L, Quinn FA, Flory PJ (1954) Crystallization kinetics in high polymers. I. Bulk polymers. J Appl Phys 25:830–839. doi: 10.1063/1.1721753 CrossRefGoogle Scholar
  33. 33.
    Kratochvíl J, Kelnar I (2015) A simple method of evaluating non-isothermal crystallization kinetics in multicomponent polymer systems. Polym Test 47:79–86. doi: 10.1016/j.polymertesting.2015.07.010 CrossRefGoogle Scholar
  34. 34.
    Mezger TG (2014) The rheology handbook, 4th edn. Vincentz network, Hanover, Germany, p 116Google Scholar
  35. 35.
    Balta-Calleja FJ, Fakirov S (2000) Microhardness of polymers. Cambridge University Press, Cambridge, pp 80–125CrossRefGoogle Scholar
  36. 36.
    Balta-Calleja FJ (1985) Microhardness relating to crystalline polymers. Adv Polym Sci 66:117–148CrossRefGoogle Scholar
  37. 37.
    Slouf M, Vackova T, Nevoralova M, Pokorny D (2015) Micromechanical properties of one-step and sequentially crosslinked UHMWPEs for total joint replacements. Polym Test 41:191–197. doi: 10.1016/j.polymertesting.2014.12.003 CrossRefGoogle Scholar
  38. 38.
    Lednický F, Šlouf M, Kratochvíl J, Baldrian J, Novotná D (2007) Crystalline character and microhardness of gamma-irradiated and thermally treated UHMWPE. J Macromol Sci, Phys 46:521–531. doi: 10.1080/00222340701257778 CrossRefGoogle Scholar
  39. 39.
    Gedde UW (1995) Crystalline polymers. In: Gedde UW (ed) Polymer physics, 1st edn. Chapman & Hall, London, pp 131–168Google Scholar
  40. 40.
    Struik LCE (1991) Some problems in the non-linear viscoelasticity of amorphous glassy polymers. J Non-Cryst Solids 131–133:395–407. doi: 10.1016/0022-3093(91)90333-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations