Advertisement

Polymer Bulletin

, Volume 74, Issue 2, pp 307–323 | Cite as

Lithium naphthalenides in non-polar or in low-polarity media: some insights regarding their use as initiators in anionic polymerizations

  • Mario D. Ninago
  • María Loreta Sena Marani
  • Verónica A. González
  • Angel J. Satti
  • Claudia Sarmoria
  • Marcelo A. Villar
  • Enrique M. Vallés
  • Andrés E. Ciolino
Original Paper
  • 223 Downloads

Abstract

The synthesis of bidirectional anionic initiators by the reaction between metallic lithium (Li) and naphthalene (Naph), under mild conditions, in non-polar (benzene) or low-polarity media (benzene/THF mixtures) is reported. The efficiency of these initiators to provide macromolecules with well-defined structures was demonstrated. Model linear homopolymers from styrene (S) or hexamethyl(ciclotrisiloxane) (D3) monomers were synthesized using classical anionic polymerization (high-vacuum techniques). The model polymers obtained were analyzed using the conventional analytical techniques, and showed narrow molar mass distributions, a broad range of molar masses (from 3000 to 1,000,000 g/mol) and polydispersity indexes (M w/M n) lower than 1.1. High molar mass polymers were obtained using pure benzene as solvent, whereas lower molar masses were obtained in benzene/THF mixtures in which the concentration of THF was lower than 10 % v/v. The ratio [Li]/[Naph] and the nature of the reaction medium are the experimental parameters to be controlled to obtain the desired lithium naphthalenides.

Keywords

PDMS Molar Mass Size Exclusion Chromatography Naph Anionic Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We express our gratitude to the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), and the Universidad Nacional del Sur (UNS, Argentina) for their financial support. The authors also wish to thank Dr. Cristian Vitale for the 1H-NMR spectrum and his helpful advices in the analysis.

References

  1. 1.
    Duncan R (2003) Nat Rev Drug Discovery 2:349–360CrossRefGoogle Scholar
  2. 2.
    Greer SC (1998) Physical chemistry of equilibrium polymerization. J Phys Chem B 102:5413–5422CrossRefGoogle Scholar
  3. 3.
    Farkas E, Meszena ZG, Johnson AF (2004) Molecular weight distribution design with living polymerization reactions. Ind Eng Chem Res 43:7356–7360CrossRefGoogle Scholar
  4. 4.
    Szwarc M, Van Beylen M, Van Hoyweghen D (1987) Simultaneity of initiation and propagation in living polymer systems. Macromolecules 20:445–448CrossRefGoogle Scholar
  5. 5.
    Matyjaszewsky K (2005) Macromolecular engineering: from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog Polym Sci 30:858–875CrossRefGoogle Scholar
  6. 6.
    Ciolino AE, Satti AJ, Villar MA (2011) Initiators for anionic polymerization: old and news developments. In: Ackrine W (ed) Polymer initiators, Chapter 1, 1st edn. Nova Science Publishers, Hauppauge, pp 1–58 (and references therein cited) Google Scholar
  7. 7.
    Szwarc M, Levy M, Milkovich R (1956) polymerization initiated by electron transfer to monomer. a new method of formation of block polymers. J Am Chem Soc 78:2656–2657CrossRefGoogle Scholar
  8. 8.
    Szwarc M (1956) Living polymers. Nature 178:1168–1169CrossRefGoogle Scholar
  9. 9.
    Baskaran D, Müller AHE (2007) Anionic vinyl polymerization—50 years after Michael Szwarc. Prog Polym Sci 32:173–219CrossRefGoogle Scholar
  10. 10.
    Fetters L, Morton M (1969) Synthesis and properties of block polymers. I. Poly-α-methylstyrene-polyisoprene-poly-α-methylstyrene. Macromolecules 2:453–458CrossRefGoogle Scholar
  11. 11.
    Fetters L (1966) J Res Natl Bureau Stand A Phys Chem 70A:421CrossRefGoogle Scholar
  12. 12.
    Morton M, Kammereck R, Fetters L (1971) Synthesis and properties of block polymers. II. Poly(α-methylstyrene)-poly(propylene sulfide)-poly(α-methylstyrene). Macromolecules 4:11–15CrossRefGoogle Scholar
  13. 13.
    Worsfold D, Bywater S (1960) Anionic polymerization of styrene: conductivity measurements. J Chem Soc, pp 5234–5238Google Scholar
  14. 14.
    Worsfold D, Bywater S (1957) Anionic polymerization of α-methylstyrene. J Polym Sci 26:299–304CrossRefGoogle Scholar
  15. 15.
    Roovers J, Toporowski P (1983) Synthesis of high molecular weight ring polystyrenes. Macromolecules 16:843–849CrossRefGoogle Scholar
  16. 16.
    Hsieh H, Quirk R (1996). Anionic polymerization: principles and practical applications, Chapter 5. Marcel Dekker, New York, pp 93–110Google Scholar
  17. 17.
    Hsieh H, Quirk R (1996). Anionic polymerization: principles and practical applications, Chapter 11. Marcel Dekker, New York, pp 261–306Google Scholar
  18. 18.
    Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S (2000) Anionic polymerization: high vacuum techniques. J Polym Sci Part A Polym Chem 38:3211–3234Google Scholar
  19. 19.
    Uhrig D, Mays J (2005) Experimental techniques in high-vacuum anionic polymerization. J Polym Sci Part A Polym Chem 43:6179–6222Google Scholar
  20. 20.
    Seyferth D (2009) The grignard reagents. Organometallics 28:1598–1605CrossRefGoogle Scholar
  21. 21.
    Ishizu K, Kanno H (1996) Novel synthesis and characterization of cyclic polystyrenes. Polymer 37:1487–1492CrossRefGoogle Scholar
  22. 22.
    Kim J, Lee M, Ryu C, Lee J, Hwang S, Park T, Kim K, Yoon H, Ahn B, Char K, Ryu J, Quirk R (1994) Synthesis of dilithium α, ω-disulfonated polystyrene by anionic polymerization. Polym J 26:1111–1117CrossRefGoogle Scholar
  23. 23.
    Dong D, Hogen-Esch TE (2001) Synthesis and characterization of macrocyclic poly(α-methylstyrene). e-Polymers 7:54–65Google Scholar
  24. 24.
    Hsieh H, Kao H, Cheng O, Tsiang R, Huang D (1995) Polymerization of styrene-butadiene block copolymers using a dicarbanion initiator made by the reaction of lithium with. alpha.-methylstyrene. Macromolecules 28:4383–4390CrossRefGoogle Scholar
  25. 25.
    Rummel S, Ilatovskaya MA, Yunusov SM, Kalyuzhnaya ES, Shur VB (2009) Activation of C-H bonds of hydrocarbons by the ArH–alkali metal systems in THF (ArH–naphthalene, biphenyl, anthracene, phenanthrene, trans-stilbene, pyrene). Alkylation of naphthalene and toluene with ethene. J Organomet Chem 694:1459–1466CrossRefGoogle Scholar
  26. 26.
    Fetters L, Kamienski C, Morrison R, Young R (1979) Remarks on organodilithium initiators. Macromolecules 12:344–346CrossRefGoogle Scholar
  27. 27.
    Melero C, Guijarro A, Yus M (2009) Structural characterization and bonding properties of lithium naphthalene radical anion, [Li+(TMEDA)2][C10H8·], and lithium naphthalene dianion [(Li+TMEDA)2C10H8−2]. Dalton Trans 8:1286–1289. doi: 10.1039/B821119C CrossRefGoogle Scholar
  28. 28.
    Yus M, Herrera R, Guijarro A (2002) On the mechanism of arene-catalyzed lithiation: the role of arene dianions—naphthalene radical anion versus naphthalene dianion. Chem Eur J 8:2574–2584CrossRefGoogle Scholar
  29. 29.
    Kurata M, Tsunashima Y (1999) Section VII: solution properties. In: Immergut EH, Grulke EA (eds) Polymer handbook, 4th edn. Wiley, New YorkGoogle Scholar
  30. 30.
    Seyferth D (2006) Alkyl and aryl derivatives of the alkali metals: useful synthetic reagents as strong bases and potent nucleophiles. 1. Conversion of organic halides to organoalkali-metal compounds. Organometallics 25:2–24CrossRefGoogle Scholar
  31. 31.
    Matmour R, Lebreton A, Tsitsilianis C, Kallitsis I, Héroguez V, Gnanou Y (2005) Tri- and tetracarbanionic initiators by a lithium/halide exchange reaction: application to star-polymer synthesis. Ang Chem Int Ed 44(2):284–287CrossRefGoogle Scholar
  32. 32.
    Rogers M (1946) The electric moment of n-butyllithium and the nature of the lithium-carbon bond. J Am Chem Soc 68:2748CrossRefGoogle Scholar
  33. 33.
    Carnahan J, Closson W (1972) Reaction of naphthalene dianions with tetrahydrofuran and ethylene. J Org Chem 37:4469–4471CrossRefGoogle Scholar
  34. 34.
    Scott N, Walker J, Hansley V (1936) Sodium naphthalene. I. A new method for the preparation of addition compounds of alkali metals and polycyclic aromatic hydrocarbons. J Am Chem Soc 58:2442–2444CrossRefGoogle Scholar
  35. 35.
    Brooks J, Rhine W, Stucky G (1972) pi.-Groups in ion pair bonding. Stabilization of the dianion of naphthalene by lithium tetramethylethylenediamine. J Am Chem Soc 94:7346–7351CrossRefGoogle Scholar
  36. 36.
    Cserhegyi A, Chaudhuri J, Franta E, Jagur-Grodzinski J, Szwarc M (1967) Radical-anion reactions in hexamethylphosphorotriamide. J Am Chem Soc 89:7129–7130CrossRefGoogle Scholar
  37. 37.
    Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Book, CaliforniaGoogle Scholar
  38. 38.
    Holy N (1974) Reactions of the radical anions and dianions of aromatic hydrocarbons. Chem Rev 74:243–277CrossRefGoogle Scholar
  39. 39.
    Hirota N (1968) Electron paramagnetic resonance studies of ion pairs. Structures and equilibria in alkali metal naphthalenide and anthracenide. J Am Chem Soc 90:3603–3611CrossRefGoogle Scholar
  40. 40.
    Smid J, Hogen-Esch T (1965) Solvent-Separated Ion Pairs of Carbanions. J Am Chem Soc 87:669–670CrossRefGoogle Scholar
  41. 41.
    Smid J (1965) A stable dianion of naphthalene. J Am Chem Soc 87:655CrossRefGoogle Scholar
  42. 42.
    Rathman T, Bailey W (2009) Optimization of organolithium reactions. Org Process Res Dev 13:144–151CrossRefGoogle Scholar
  43. 43.
    Bauer W, Winchester W, von Ragu Schleyer P (1987) Monomeric organolithium compounds in tetrahydrofuran: tert-butyllithium, sec-butyllithium, supermesityllithium, mesityllithium, and phenyllithium. Carbon-lithium coupling constants and the nature of carbon-lithium bonding. Organometallics 6:2371–2379CrossRefGoogle Scholar
  44. 44.
    Smid J, Hogen-Esch J (1966) Studies of contact and solvent-separated ion pairs of carbanions. I. Effect of temperature, counterion, and solvent. J Am Chem Soc 88:307–318CrossRefGoogle Scholar
  45. 45.
    Garst J, Cole R (1962) Solvent effect on the disproportionation of monosodium tetraphenylethylene. J Am Chem Soc 84:4352–4353CrossRefGoogle Scholar
  46. 46.
    Garst J, Zabolotny E, Cole R (1964) Disproportionation of monosodium tetraphenylethylene. J Am Chem Soc 86:2257–2261CrossRefGoogle Scholar
  47. 47.
    Garst J, Zabolotny E (1965) Electron transfer equilibria. IV. Effects of metal ion and temperature on the disproportionation of monoalkali tetraphenylethylenes. J Am Chem Soc 87:495–501CrossRefGoogle Scholar
  48. 48.
    Slates RV, Szwarc M (1965) Dissociative equilibria in the systems aromatic hydrocarbon[UNK], Na+ ⇄ Radical Anion[UNK] + Na+. J Phys Chem 69:4124–4131CrossRefGoogle Scholar
  49. 49.
    Pola J, Levin G, Szwarc M (1976) Equilibrium and kinetic studies of disproportionation of sodium tetracenide in benzene. The effect of added tetrahydrofuran. J Phys Chem 80:1690–1692CrossRefGoogle Scholar
  50. 50.
    Garst JF, Roberts RD, Abels BN (1975) Solvent effects on reactions of sodium naphthalene with hexyl fluoride. J Am Chem Soc 97:4925–4929CrossRefGoogle Scholar
  51. 51.
    Garst J, Klein R, Walmsley D, Zabolotny E (1965) Ion aggregate spectra and solvent polarity. J Am Chem Soc 87:4080–4084CrossRefGoogle Scholar
  52. 52.
    Pacifici JD, Garst JF, Janzen EG (1965) An unusual solvent effect on the air oxidation of a stable carbanion. J Am Chem Soc 87:3014–3015CrossRefGoogle Scholar
  53. 53.
    Szwarc M (1972) Radical anions and carbanions as donors in electron-transfer processes. Acc Chem Res 5:169–176CrossRefGoogle Scholar
  54. 54.
    Lundgren B, Levin G, Claesson S, Szwarc M (1975) Disproportionation of the lithium salt of tetraphenylethylene radical anions in THF. Equilibrium and kinetic study. J Am Chem Soc 97:262–267CrossRefGoogle Scholar
  55. 55.
    Levin G, Jagur-Grodzinski J, Szwarc M (1970) Chemistry of radical anions and dianions of diphenylacetylene. J Am Chem Soc 92:2268–2275CrossRefGoogle Scholar
  56. 56.
    Tobolsky A, Hartley D (1962) Initiation of methyl methacrylate by aromatic radical-anions. J Am Chem Soc 84:1391–1393CrossRefGoogle Scholar
  57. 57.
    Morton M, Rembaum A, Bostick E (1958) Polymerization of cyclic oxides initiated by electron transfer. J Polym Sci 32:530–532CrossRefGoogle Scholar
  58. 58.
    Bellas V, Iatrou H, Hadjichristidis N (2000) Controlled anionic polymerization of hexamethylcyclotrisiloxane. Model linear and miktoarm star co- and terpolymers of dimethylsiloxane with styrene and isoprene. Macromolecules 33:6993–6997CrossRefGoogle Scholar
  59. 59.
    Ninago MD, Satti AJ, Ressia JA, Ciolino AE, Villar MA, Vallés EM (2009) Controlled synthesis of poly(dimethylsiloxane) homopolymers using high-vaccum anionic polymerization techniques. J Polym Sci A Polym Chem 47:4774–4783Google Scholar
  60. 60.
    Hsieh H, Quirk R (1996). Anionic polymerization: principles and practical applications, Chapter 24. Marcel Dekker, New York, pp 685–710Google Scholar
  61. 61.
    Hummel DO, Scholl F (1988) Atlas of polymer and plastic analysis, vol 2, Chapter 5. Carl Hanser Verlag, Munich, pp 284–306Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mario D. Ninago
    • 1
  • María Loreta Sena Marani
    • 1
  • Verónica A. González
    • 1
  • Angel J. Satti
    • 1
    • 2
  • Claudia Sarmoria
    • 1
  • Marcelo A. Villar
    • 1
  • Enrique M. Vallés
    • 1
  • Andrés E. Ciolino
    • 1
  1. 1.Planta Piloto de Ingeniería Química (PLAPIQUI), Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Bahía BlancaArgentina
  2. 2.Departamento de QuímicaInstituto de Química del Sur (INQUISUR), UNS, CONICETBahía BlancaArgentina

Personalised recommendations