Polymer Bulletin

, Volume 73, Issue 12, pp 3531–3545 | Cite as

Rheological, mechanical and morphological behavior of polylactide/nano-sized calcium carbonate composites

  • Janaina Fernandes Moreno de Almeida
  • Ana Lúcia Nazareth da SilvaEmail author
  • Viviane Alves Escócio
  • Antônio Henrique Monteiro da Fonseca Thomé da Silva
  • Ana Maria Furtado de Sousa
  • Christine Rabello Nascimento
  • Luiz Carlos Bertolino


Semicrystalline polylactide (PLA) is a promising material to replace petroleum-based plastics since it can be synthesized from renewable resources. PLA exhibits high tensile strength and modulus, but very low strain-at-break and toughness. In this study, the effects of the nano-sized calcium carbonate (nCaCO3) on the rheological, mechanical and morphological properties of polylactide are evaluated. The PLA/nCaCO3 composites with different filler compositions, as well as neat PLA (used as reference) were prepared by melt mixing in a twin-screw extruder. The results show that the presence of 7.0 wt% of nCaCO3 in the composite not only produced an ultimate strain improvement, but also better overall toughness balance in comparison to the other compositions. MEV micrographs showed the presence of microvoids with composition containing 7.0 wt% nCaCO3, which explains the mentioned mechanical behavior. This composition also showed more viscous behavior in relation to neat PLA and 5.0 wt% nCaCO3 composite. Composite with 3 wt% of nanofiller presented the highest viscous behavior in relation to neat PLA and other composites. Both mechanical data and Cole–Cole plots indicated the overall absence of higher filler aggregates in the composites analyzed, corroborating the MEV micrographs.


Polylactide Nano-sized calcium carbonate Composite Rheology Mechanical properties 



We acknowledge financial support by CAPES. We are also grateful to NatureWorks and Nanomaterials Technology for supplying the PLA and nCaCO3, respectively.


  1. 1.
    Park JW, Im SS (2000) Biodegradable polymer blends of poly(l-lactic acid) and gelatinized starch. Polym Eng Sci 40:2539–2550CrossRefGoogle Scholar
  2. 2.
    Wu CS, Liao HT et al (2013) Thermal properties and characterization of surface-treated RSF-reinforced polylactide composites. Polym Bull 70:3221–3239CrossRefGoogle Scholar
  3. 3.
    Wang H, Sun X, Seib P (2002) Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. J Appl Polym Sci 84:1257–1262CrossRefGoogle Scholar
  4. 4.
    Beauvalet MS, Mota FF et al (2013) Influence of glycerol on morphology and properties of polylactide/montmorillonite nanocomposites. Polym Bull 70:1863–1873CrossRefGoogle Scholar
  5. 5.
    Zhang JF, Sun X (2004) Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J Appl Polym Sci 94:1697–1704CrossRefGoogle Scholar
  6. 6.
    Nising P, Loviat F, de Vos S (2009) Continuous PLA production in a Sulzer static mixer reactor. In: 11th pacific polymer conference, Cairns/Australia, 6–10 DecemberGoogle Scholar
  7. 7.
    Xiao H, Liu F et al (2010) Kinetics and crystal structure of isothermal crystallization of poly(lactic acid) plasticized with triphenyl phosphate. J Appl Polym Sci 117:2980–2992Google Scholar
  8. 8.
    Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501CrossRefGoogle Scholar
  9. 9.
    Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542CrossRefGoogle Scholar
  10. 10.
    Liu M, Pu M, Ma H (2012) Preparation, structure and thermal properties of polylactide/sepiolita nanocomposites with and without organic modifiers. Compos Sci Technol 72:1508–1514CrossRefGoogle Scholar
  11. 11.
    Jiang L, Zhang J, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644CrossRefGoogle Scholar
  12. 12.
    Kang KS, Lee SI et al (2008) Effect of biobased and biodegradable nucleating agent on the isothermal crystallization of poly(lactic acid). Korean J Chem Eng 25(3):599–608CrossRefGoogle Scholar
  13. 13.
    Kim CH, Cho KY et al (2000) Effect of P(/LA-co-εCL) on the compatibility and crystallization behavior of PCL/PLLA blends. J Appl Polym Sci 77:226–231CrossRefGoogle Scholar
  14. 14.
    Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107:246–2255CrossRefGoogle Scholar
  15. 15.
    Maglio G, Malinconico M et al (2004) Immiscible POLY(l-lactide)/poly(ε-caprolactone) blends: influence of the addition of poly(l-lactide)-poly(oxyethylene) block copolymer on thermal behavior and morphology. Macromol Chem Phys 205:946–950CrossRefGoogle Scholar
  16. 16.
    Zhidan L, Zishou Z et al (2006) Investigation on preparation and property of nano-CaCO3/PP masterbatch modified by reactive monomers. J Appl Polym Sci 101:3907–3914CrossRefGoogle Scholar
  17. 17.
    Zuiderduin WCJ, Westzaan C et al (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44:261–275CrossRefGoogle Scholar
  18. 18.
    Zhang J, Han B et al (2011) Preparation and characterization of nano/micro-calcium carbonate particles/polypropylene composites. J Appl Polym Sci 119:3560–3565CrossRefGoogle Scholar
  19. 19.
    Kiss A, Fekete E, Pukánszky B (2007) Aggregation of CaCO3 particles in PP composites: effect of surface coating. Compos Sci Technol 67:1574–1583CrossRefGoogle Scholar
  20. 20.
    Liang DJZ, Duan DR et al (2014) Correlation between impact strength and fractal dimensions of fracture surface for PLLA/nano-CaCO3 composites. Polym Test 35:109–115CrossRefGoogle Scholar
  21. 21.
    Liang JZ, Zhou L, Tang CY, Tsui CP (2013) Crystalline properties of poly(l-latic acid) composites filled with nanometer calcium carbonate. Compos B 45:1646–1650CrossRefGoogle Scholar
  22. 22.
    Nekhamanurak B, Patanathabutr P, Hongsriphan N (2014) The influence of micro-/nano-CaCO3 on thermal stability and melt rheology behavior of poly(lactic acid). Energy Procedia 56:118–128CrossRefGoogle Scholar
  23. 23.
    Yao L, Chun XQ, Jin MZ, Xu WH (2010) Unusual morphology of calcium carbonate controlled by amino acids in agarose gel. J Chil Chem Soc 55:270–273CrossRefGoogle Scholar
  24. 24.
    Chew KW, Ng TC, How ZH (2013) Conductivity and microstructure study of PLA-based polymer electrolyte salted with lithium perchloride, LiClO4. Int J Electrochem Sci 8:354–6364Google Scholar
  25. 25.
    Karamipour S, Dehaghani HE et al (2011) Effect of nano-CaCO3 on rheological and dynamic mechanical properties of polypropylene: experiments and models. Polym Test 30:110–117CrossRefGoogle Scholar
  26. 26.
    Garcia PS, Schuracchio CH, Cruz SA (2013) Effect of residual contaminants and of different types of extrusion processes on the rheological properties of the post-consumer polypropylene. Polym Test 32:1237–1243CrossRefGoogle Scholar
  27. 27.
    Cipriano TF, Silva ALN et al (2013) Rheological and morphological properties of composites based on polylactide and talc. J Mater Sci Eng B 3(11):695–699Google Scholar
  28. 28.
    Fu SY, Feng XQ et al (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Compos Part B 2008 39:933–961CrossRefGoogle Scholar
  29. 29.
    Liang JZ (2013) Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Compos B 51:224–232CrossRefGoogle Scholar
  30. 30.
    Lam TD, Hoang TV et al (2009) Effects of nanosized and surface-modified precipitated calcium carbonate on propertied of CaCO3/polypropylene nanocomposites. Mater Sci Eng A 501:87–93CrossRefGoogle Scholar
  31. 31.
    Chan CM, Wu J et al (2002) Polypropylene/calcium carbonate nanocomposites. Polymer 43:2981–2992CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Janaina Fernandes Moreno de Almeida
    • 1
  • Ana Lúcia Nazareth da Silva
    • 1
    Email author
  • Viviane Alves Escócio
    • 1
  • Antônio Henrique Monteiro da Fonseca Thomé da Silva
    • 2
  • Ana Maria Furtado de Sousa
    • 3
  • Christine Rabello Nascimento
    • 4
  • Luiz Carlos Bertolino
    • 5
  1. 1.Instituto de Macromoléculas Professora Eloisa Mano-IMA/UFRJRio de JaneiroBrazil
  2. 2.Escola de Engenharia-UFFNiteróiBrazil
  3. 3.Instituto de Química-IQ/UERJRio de JaneiroBrazil
  4. 4.Programa de Engenharia Metalúrgica-PEMM/COPPE/UFRJRio de JaneiroBrazil
  5. 5.Centro de Tecnologia Mineral-CETEMRio de JaneiroBrazil

Personalised recommendations