Polymer Bulletin

, Volume 73, Issue 10, pp 2719–2739 | Cite as

Investigation of compatibilization effects of SEBS-g-MA on polystyrene/polyethylene blend with a novel separation method in melted state

  • Károly Dobrovszky
  • Ferenc RonkayEmail author
Original Paper


Preparing polymer blends is an effective way to tailor the good properties of plastics but the most commonly used polymers are incompatible with each other. Therefore, to reduce the interfacial tension and to achieve finer and stable morphology, a suitable copolymer or compatibilizer has to be added to blends in order to establish new interactions between the phases. However, it is difficult to determine the required amount of compatibilizers in polymer blends. As an outcome of the present research a novel separation method was developed, where the blends are investigated in melted state, utilising centrifugal force to determine the adequacy of compatibilizers. The effectiveness of styrene/ethylene/butylene/styrene block copolymer grafted with maleic anhydride (SEBS-g-MA) was verified by blending two immiscible plastics: polystyrene (PS) and high density polyethylene (HDPE). FTIR measurements were carried out to support the results of optical microscopy regarding the purity of separation. Comparing the results of morphology, rheology and mechanical properties with the novel separation method, it seems that investigation of compatibilization effect in a melted state would be suitable for predicting the adequacy of compatibilizer in blend. The minimum required amount of compatibilizer was also detectable, wherein the stress–strain curves begins to change significantly and the impact properties starting to improve in PS/HDPE blends.


Compatibilization Polymer separation Polymer blend Centrifugal force Polymers in melted state 



This research was realized in the framework of TÁMOP 4.2.4. A/1-11-1-2012-0001 “National Excellence Program—Elaborating and operating an inland student and researcher personal support system”. The project was subsidized by the European Union and co-financed by the European Social Fund. The infrastructure of the research project was supported by the Hungarian Scientific Research Fund (OTKA K109224).


  1. 1.
    Fekete E, Földes E, Pukánszky B (2005) Effect of molecular interactions on the miscibility and structure of polymer blends. Eur Polym 41:727–736. doi: 10.1016/j.eurpolymj.2004.10.038 CrossRefGoogle Scholar
  2. 2.
    Utracki LA, Mukhopadhyay P, Gupta RK (2014) Polymer blends: introduction. In: Utracki LA, Wilkie CA (eds) Polymer blends handbook, vol 1, 2nd edn. Springer, Dordrecht, pp 3–170Google Scholar
  3. 3.
    Van Eerdenbrugh B, Taylor LS (2012) Molecular weight effects on the miscibility behavior of dextran and maltodextrin with poly(vinylpyrrolidone). Pharm Res 29:2754–2765. doi: 10.1007/s11095-012-0689-5 CrossRefGoogle Scholar
  4. 4.
    Anastasiadis SH, Gancarz I, Koberstein JT (1988) Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules 21:2980–2987. doi: 10.1021/ma00188a015 CrossRefGoogle Scholar
  5. 5.
    Wang D, Li Y, Xie X-M, Guo B-H (2011) Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 52:191–200. doi: 10.1016/j.polymer.2010.11.019 CrossRefGoogle Scholar
  6. 6.
    Sperling LH (2005) Introduction to physical polymer science, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  7. 7.
    Imre B, Renner K, Pukánszky B (2014) Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends. Express Polym Lett 8:2–14. doi: 10.3144/expresspolymlett.2014.2 CrossRefGoogle Scholar
  8. 8.
    Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond A 138:41–48. doi: 10.1098/rspa.1932.0169 CrossRefGoogle Scholar
  9. 9.
    Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond A 146:501–523. doi: 10.1098/rspa.1934.0169 CrossRefGoogle Scholar
  10. 10.
    Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6:437–446. doi: 10.1039/B510841A CrossRefGoogle Scholar
  11. 11.
    Ramic AJ, Hudson SD, Jamieson AM, Manas-Zloczower I (2000) Temporary droplet-size hysteresis in immiscible polymer blends. Polymer 41:62623–66270. doi: 10.1016/S0032-3861(99)00845-9 CrossRefGoogle Scholar
  12. 12.
    Díaz MF, Barbosa SE, Capiati NJ (2007) Reactive compatibilization of PE/PS blends. Effect of copolymer chain length on interfacial adhesion and mechanical behavior. Polymer 48:1058–1065. doi: 10.1016/j.polymer.2006.12.040 CrossRefGoogle Scholar
  13. 13.
    Chandrasekharakurup SC, Shanks RA, Thomas S (2014) Polymer blends. In: Thomas S, Shanks RA, Chandrasekharakurup SC (eds) Nanostructured polymer blends, vol 1. William Andrew, Waltham, pp 1–14Google Scholar
  14. 14.
    Li Y-Y, S-w Hu, Sheng J (2007) Evolution of phase dimensions and interfacial morphology of polypropylene/polystyrene compatibilized blends during mixing. Eur Polym J 43:561–572. doi: 10.1016/j.eurpolymj.2006.10.018 CrossRefGoogle Scholar
  15. 15.
    Shahbazi Kh, Razavi Aghjeh MK, Abbasi F, Partovi Meran M, Mehrabi Mazidi M (2012) Rheology, morphology and tensile properties of reactive compatibilized polyethylene/polystyrene blends via Friedel-Crafts alkylation reaction. Polym Bull 69:241–259. doi: 10.1007/s00289-012-0751-9 CrossRefGoogle Scholar
  16. 16.
    Li Z, Liu CM, Liu HL, Wang K, Fu Q (2014) Non-uniform dispersion of toughening agents and its influence on the mechanical properties of polypropylene. Express Polym Lett 8:232–242. doi: 10.3144/expresspolymlett.2014.27 CrossRefGoogle Scholar
  17. 17.
    Gy Marosi (2011) Interfaces in Multiphase Polymer Systems. In: Boudenne L, Ibos L, Candau Y, Thomas S (eds) Handbook of multiphase polymer systems. Wiley, Chichester, pp 81–112Google Scholar
  18. 18.
    Argoud A, Trouillet-Fonti L, Ceccia S, Sotta P (2014) Morphologies in polyamide 6/high density polyethylene blends with high amounts of reactive compatibilizer. Eur Polym J 50:177–189. doi: 10.1016/j.eurpolymj.2013.10.026 CrossRefGoogle Scholar
  19. 19.
    Rzayev ZMO (2011) Graft copolymers of maleic anhydride and its isostructural analogues: high performance engineering materials. Int Rev Chem Eng 3:153–215Google Scholar
  20. 20.
    Al-Malaika S (1997) Reactive modifiers for polymers, 1st edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  21. 21.
    Parameswaranpillai J, Joseph G, Chellappan RV, Zahakariah AK, Hameed N (2015) The effect of polypropylene-graft-maleic anhydride on the morphology and dynamic mechanical properties of polypropylene/polystyrene blends. J Polym Res 22:2. doi: 10.1007/s10965-014-0641-y CrossRefGoogle Scholar
  22. 22.
    Zhu Y, Liang C, Bo Y, Xu S (2015) Compatibilization of polypropylene/recycled polyethylene terephthalate blends with maleic anhydride grafted polypropylene in the presence of diallyl phthalate. J Polym Res 22:35. doi: 10.1007/s10965-014-0591-4 CrossRefGoogle Scholar
  23. 23.
    Mariam Atiqah AAS, Salmah H, Firuz Z, Lan DNU (2014) Properties of recycled high density polyethylene/recycled polypropylene blends: effect of maleic anhydride polypropylene. Key Eng Mat 594–595:837–841. doi: 10.4028/ Google Scholar
  24. 24.
    Jose S, Thomas S, Parameswaranpillai J, Aprem AS, Karger-Kocsis J (2015) Dynamic mechanical properties of immiscible polymer systems with and without compatibilizer. Polym Test 44:168–176. doi: 10.1016/j.polymertesting.2015.04.008 CrossRefGoogle Scholar
  25. 25.
    Tóth B, Cs Varga, Bartha L (2015) Olefin–maleic-anhydride copolymer based additives: A novel approach for compatibilizing blends of waste polyethylene and crumb rubber. Waste Manage 38:65–71. doi: 10.1016/j.wasman.2015.01.004 CrossRefGoogle Scholar
  26. 26.
    Quiroz-Castillo JM, Rodríguez-Félix DE, Grijalva-Monteverde H, del Castillo-Castro T, Plascencia-Jatomea M, Rodríguez-Félix F, Herrera-Franco PJ (2014) Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohyd Polym 101:1094–1100. doi: 10.1016/j.carbpol.2013.10.052 CrossRefGoogle Scholar
  27. 27.
    Lei Y, Wu Q, Zhang Q (2009) Morphology and properties of microfibrillar composites based on recycled poly (ethylene terephthalate) and high density polyethylene. Compos Part A-Appl S 40:904–912. doi: 10.1016/j.compositesa.2009.04.017 CrossRefGoogle Scholar
  28. 28.
    Pluta M, Bartczak Z, Pawlak A, Galeski A, Pracella M (2001) Phase structure and viscoelastic properties of compatibilized blends of PET and HDPE recyclates. J Appl Polym Sci 82:1423–1436. doi: 10.1002/app.1980 CrossRefGoogle Scholar
  29. 29.
    Kalfoglou NK, Skafidas DS, Kallitsis JK, Lambert J-C, Van der Stappen L (1995) Comparison of compatibilizer effectiveness for PET/HDPE blends. Polymer 36:4453–4462. doi: 10.1016/0032-3861(95)96853-Z CrossRefGoogle Scholar
  30. 30.
    Pracella M, Pazzagli F, Galeski A (2002) Reactive compatibilization and properties of recycled poly(ethylene terephthalate)/polyethylene blends. Polym Bull 48:67–74. doi: 10.1007/s00289-002-0001-7 CrossRefGoogle Scholar
  31. 31.
    Dobrovszky K, Ronkay F (2015) Effects of SEBS-g-MA on rheology, morphology and mechanical properties of PET/HDPE blends. Int Polym Proc 30:91–99. doi: 10.3139/217.297 CrossRefGoogle Scholar
  32. 32.
    Jogi BF, Bhattacharyya AR, Poyekar A, Pötschke P, Simon GP, Kumar S (2015) The simultaneous addition of styrene maleic anhydride copolymer and multiwall carbon nanotubes during melt-mixing on the morphology of binary blends of polyamide6 and acrylonitrile butadiene styrene copolymer. Polym Eng Sci 55:457–465. doi: 10.1002/pen.23905 CrossRefGoogle Scholar
  33. 33.
    Hato MJ, Motaung TE, Choi HJ, Scriba M, Khumalo VM, Malweal T (2015) Effect of organoclay on the properties of maleic-anhydride grafted polypropylene and poly(methyl methacrylate) blend. Polym Composite. doi: 10.1002/pc.23601 (in press) Google Scholar
  34. 34.
    Gianoglio Pantano IA, Asteasuain M, Sarmoria C, Brandolin A (2012) Graft copolymers for blend compatibilization: mathematical modeling of the grafting process. Macromol React Eng 6:406–418. doi: 10.1002/mren.201200025 CrossRefGoogle Scholar
  35. 35.
    Rek V, Vranješ N, Šlouf M, Fortelný I, Jelčić Z (2008) Morphology and properties of SEBS block copolymer compatibilized PS/HDPE blends. J Elastom Plast 40:237–251. doi: 10.1177/0095244307084906 CrossRefGoogle Scholar
  36. 36.
    Hamad K, Kaseem M, Deri F (2013) Recycling of waste from polymer materials: an overview of the recent works. Polym Degrad Stabil 98:2801–2812. doi: 10.1016/j.polymdegradstab.2013.09.025 CrossRefGoogle Scholar
  37. 37.
    Elmaghor F, Zhang L, Li H (2003) Recycling of high density polyethylene/poly(vinyl chloride)/polystyrene ternary mixture with the aid of high energy radiation and compatibilizers. J Appl Polym Sci 88:2756–2762. doi: 10.1002/app.11985 CrossRefGoogle Scholar
  38. 38.
    Thirtha V, Lehman R, Nosker T (2006) Morphological effects on glass transition behavior in selected immiscible blends of amorphous and semicrystalline polymers. Polymer 47:5392–5401. doi: 10.1016/j.polymer.2006.05.014 CrossRefGoogle Scholar
  39. 39.
    Lazo NDB, Scott CE (1999) Morphology development during phase inversion of a PS/PE blend in isothermal, steady shear flow. Polymer 40:5469–5478. doi: 10.1016/S0032-3861(98)00792-7 CrossRefGoogle Scholar
  40. 40.
    Willemse RC, Speijer A, Langeraar AE, Posthuma de Boer A (1999) Tensile moduli of co-continuous polymer blends. Polymer 40:6645–6650. doi: 10.1016/S0032-3861(98)00874-X CrossRefGoogle Scholar
  41. 41.
    Willemse RC, Posthuma de Boer A, van Dam J, Gotsis AD (1998) Co-continuous morphologies in polymer blends: a new model. Polymer 39:5879–5887. doi: 10.1016/S0032-3861(97)10200-2 CrossRefGoogle Scholar
  42. 42.
    Min K, White JL, Fellers JF (1984) High density polyethylene/polystyrene blends: phase distribution morphology, rheological measurements, extrusion, and melt spinning behavior. J Appl Polym Sci 29:2117–2142. doi: 10.1002/app.1984.070290619 CrossRefGoogle Scholar
  43. 43.
    Mekhilef N, Carreau PJ, Favis BD, Martin P, Ouhlal A (2000) Viscoelastic properties and interfacial tension of polystyrene–polyethylene blends. J Polym Sci Pol Phys 38:1359–1368. doi: 10.1002/(SICI)1099-0488(20000515)38:10<1359:AID-POLB130>3.0.CO;2-D CrossRefGoogle Scholar
  44. 44.
    Xu S-A, Chan C-M (1998) Polystyrene/high density polyethylene blends compatibilized by a tri-block copolymer. I Properties and morphology. Polym J 30:552–558. doi: 10.1295/polymj.30.552 CrossRefGoogle Scholar
  45. 45.
    Chen B, Li X, Xu S, Tang T, Zhou B, Huang B (2002) Compatibilization effects of block copolymers in high density polyethylene/syndiotactic polystyrene blends. Polymer 43:953–961. doi: 10.1016/S0032-3861(01)00660-7 CrossRefGoogle Scholar
  46. 46.
    Liu C-Y (2007) A novel method to characterize the compatibilizer effect in polymer blend. J Polym Sci Pol Phys 45:3215–3219. doi: 10.1002/polb.21310 CrossRefGoogle Scholar
  47. 47.
    Tang J, Tang W, Yuan H, Jin R (2007) Mechanical behaviors of ethylene/styrene interpolymer compatibilized polystyrene/polyethylene blends. J Appl Polym Sci 104:4001–4007. doi: 10.1002/app.26031 CrossRefGoogle Scholar
  48. 48.
    Pötschke P, Paul DR (2003) Formation of co-continuous structures in melt-mixed immiscible polymer blends. J Macromol Sci-Pol R 43:87–141. doi: 10.1081/MC-120018022 CrossRefGoogle Scholar
  49. 49.
    Teh JW, Rudin A (1992) Compatibilization of a polystyrene-polyethylene blend through reactive processing in a twin screw extruder. Polym Eng Sci 32:1678–1686. doi: 10.1002/pen.760322205 CrossRefGoogle Scholar
  50. 50.
    Gianoglio Pantano IA, Brandolin A, Sarmoria C (2011) Mathematical modeling of the graft reaction between polystyrene and polyethylene. Polym Degrad Stabil 96:416–425. doi: 10.1016/j.polymdegradstab.2011.01.016 CrossRefGoogle Scholar
  51. 51.
    Galloway JA, Jeon HK, Bell JR, Macosko CW (2005) Block copolymer compatibilization of cocontinuous polymer blends. Polymer 46:183–191. doi: 10.1016/j.polymer.2004.10.061 CrossRefGoogle Scholar
  52. 52.
    Wang Z, Chan C-M, Zhu SH, Shen J (1998) Compatibilization of polystyrene and low density polyethylene blends by a two-step crosslinking process. Polymer 39:6801–6806. doi: 10.1016/S0032-3861(98)00174-8 CrossRefGoogle Scholar
  53. 53.
    Fortelný I, Mikešová J, Hromádková J, Hašová V, Horák Z (2003) Effect of molecular structure of styrene–butadiene block copolymers on morphology, rheological properties, and impact strength of polystyrene/polyethylene blends. J Appl Polym Sci 90:2303–2309. doi: 10.1002/app.12730 CrossRefGoogle Scholar
  54. 54.
    Schwarz MC, Barlow JW, Paul DR (1998) Mechanical properties of HDPE/(PEC/PS)/SEBS blends. J Appl Polym Sci 35:2053–2067. doi: 10.1002/app.1988.070350806 CrossRefGoogle Scholar
  55. 55.
    Taha M, Frerejean V (1996) Morphology development of LDPE-PS blend compatibilization. J Appl Polym Sci 61:969–979. doi: 10.1002/(SICI)1097-4628(19960808)61:6<969:AID-APP11>3.0.CO;2-Q CrossRefGoogle Scholar
  56. 56.
    Jelčić Z, Vranješ N, Rek V (2010) Long-range processing correlation and morphological fractality of compatibilized blends of PS/HDPE/SEBS block copolymer. Macromol Symp 290:1–14. doi: 10.1002/masy.201050401 CrossRefGoogle Scholar
  57. 57.
    Li J, Favis BD (2001) Characterizing co-continuous high density polyethylene/polystyrene blends. Polymer 42:5047–5053. doi: 10.1016/S0032-3861(00)00785-0 CrossRefGoogle Scholar
  58. 58.
    Veenstra H, Van Dam J, Posthuma de Boer A (2000) On the coarsening of co-continuous morphologies in polymer blends: effect of interfacial tension, viscosity and physical cross-links. Polymer 41:3037–3045. doi: 10.1016/S0032-3861(99)00455-3 CrossRefGoogle Scholar
  59. 59.
    Kunyawut C (2006) A study of droplet coalescence in immiscible PS/LDPE blends under annealing conditions. Thammasat Int J Sc Tech 11(2):21–33Google Scholar
  60. 60.
    Iza M, Bousmina M, Jérôme R (2001) Rheology of compatibilized immiscible viscoelastic polymer blends. Rheol Acta 40:10–22. doi: 10.1007/s003970000112 CrossRefGoogle Scholar
  61. 61.
    Tjong SC, Xu SA (1998) Impact and tensile properties of SEBS copolymer compatibilized PS/HDPE blends. J Appl Polym Sci 68:1099–1108. doi: 10.1002/(SICI)1097-4628(19980516)68:7<1099:AID-APP7>3.0.CO;2-A CrossRefGoogle Scholar
  62. 62.
    Bartczak Z, Galeski A, Pluta M (2000) Ternary blends of high-density polyethylene–polystyrene–poly(ethylene/butylene-b-styrene) copolymers: properties and orientation behavior in plane–strain compression. J Appl Polym Sci 76:1746–1761. doi: 10.1002/(SICI)1097-4628(20000620)76:12<1746:AID-APP4>3.0.CO;2-O CrossRefGoogle Scholar
  63. 63.
    Xu SA, Tjong SC (2000) Deformation mechanisms and fracture toughness of polystyrene/high-density polyethylene blends compatibilized by triblock copolymer. J Appl Polym Sci 77:2024–2033. doi: 10.1002/1097-4628(20000829)77:9<2024:AID-APP19>3.0.CO;2-3 CrossRefGoogle Scholar
  64. 64.
    Chirawithayaboon A, Kiatkamjornwong S (2004) Compatibilization of high-impact polystyrene/high-density polyethylene blends by styrene/ethylene–butylene/styrene block copolymer. J Appl Polym Sci 91:742–755. doi: 10.1002/app.13215 CrossRefGoogle Scholar
  65. 65.
    Nam GJ, Kim KY, Lee JW (2005) The effect of SEBS on interfacial tension and rheological properties of LDPE/PS blend. J Appl Polym Sci 96:905–911. doi: 10.1002/app.21536 CrossRefGoogle Scholar
  66. 66.
    Mekhilef N, Favis BD, Carreau PJ (1997) Morphological stability, interfacial tension, and dual-phase continuity in polystyrene-polyethylene blends. J Polym Sci Pol Phys 35:293–308. doi: 10.1002/(SICI)1099-0488(19970130)35:2<293:AID-POLB7>3.0.CO;2-T CrossRefGoogle Scholar
  67. 67.
    Bourry D, Favis BD (1998) Cocontinuity and phase inversion in HDPE/PS blends: influence of interfacial modification and elasticity. J Polym Sci Pol Phys 36:1889–1899. doi: 10.1002/(SICI)1099-0488(199808)36:11<1889:AID-POLB10>3.0.CO;2-3 CrossRefGoogle Scholar
  68. 68.
    Harrats C, Fayt R, Jérôme R, Blacher S (2003) Stabilization of a cocontinuous phase morphology by a tapered diblock or triblock copolymer in polystyrene-rich low-density polyethylene/polystyrene blends. J Polym Sci Pol Phys 41:202–216. doi: 10.1002/polb.10370 CrossRefGoogle Scholar
  69. 69.
    Li J, Ma PL, Favis BD (2002) The role of the blend interface type on morphology in cocontinuous polymer blends. Macromolecules 35:2005–2016. doi: 10.1021/ma010104+ CrossRefGoogle Scholar
  70. 70.
    Abis L, Abbondanza L, Braglia R, Castellani L, Giannotta G, Po R (2000) Syndiotactic polystyrene/high-density polyethylene blends compatibilized with SEBS copolymer: thermal, morphological, tensile, dynamic-mechanical, and ultrasonic characterization. Macromol Chem Physic 201:1732–1741. doi: 10.1002/1521-3935(20000901)201:14<1732:AID-MACP1732>3.0.CO;2-J CrossRefGoogle Scholar
  71. 71.
    Bureau MN, El Kadi H, Denault J, Dickson JI (1997) Injection and compression molding of polystyrene/high-density polyethylene blends-phase morphology and tensile behavior. Polym Eng Sci 37:377–390. doi: 10.1002/pen.11680 CrossRefGoogle Scholar
  72. 72.
    Sahnoune F, Lopez Cuesta JM, Crespy A (2003) Improvement of the mechanical properties of an HDPE/PS blend by compatibilization and incorporation of CaCO3. Polym Eng Sci 43:647–660. doi: 10.1002/pen.10053 CrossRefGoogle Scholar
  73. 73.
    Ha C-S, Park H-D, Kim Y, Kwon S-K, Cho W-J (1996) Compatibilizer in polymer blends for the recycling of plastics waste I: preliminary studies on 50/50 wt% virgin polyblends. Polym Advan Technol 7:483–492. doi: 10.1002/(SICI)1099-1581(199605)7:5/6<483:AID-PAT511>3.0.CO;2-V CrossRefGoogle Scholar
  74. 74.
    Dobrovszky K, Ronkay F (2014) Alternative polymer separation technology by centrifugal force in a melted state. Waste Manage 34:2104–2112. doi: 10.1016/j.wasman.2014.05.006 CrossRefGoogle Scholar
  75. 75.
    Dobrovszky K, Csergő V, Ronkay F (2015) Alternative, new method for predicting polymer waste stream contents. Mater Sci Forum 812:247–252. doi: 10.4028/ CrossRefGoogle Scholar
  76. 76.
    Lin X, Qian Q, Xiao L, Chen Q, Huang Q, Zhang H (2014) Influence of reactive compatibilizer on the morphology, rheological, and mechanical properties of recycled poly(ethylene terephthalate)/polyamide 6 blends. J Macromol Sci B 53:1543–1552. doi: 10.1080/00222348.2014.946840 CrossRefGoogle Scholar
  77. 77.
    Jafari SH, Yavari A, Asadinezhad A, Khonakdar HA, Böhme F (2005) Correlation of morphology and rheological response of interfacially modified PTT/m-LLDPE blends with varying extent of modification. Polymer 46:5082–5093. doi: 10.1016/j.polymer.2005.04.045 CrossRefGoogle Scholar
  78. 78.
    Quintens D, Groeninckx G, Guest M, Aerts L (1990) Mechanical behavior related to the phase morphology of PC/SAN polymer blends. Polym Eng Sci 30:1474–1483. doi: 10.1002/pen.760302208 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Polymer Engineering, Faculty of Mechanical EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations