Polymer Bulletin

, Volume 73, Issue 3, pp 815–840 | Cite as

Environmental-sensitive chitosan-g-polyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: synthesis and properties

  • Hafida Ferfera-HarrarEmail author
  • Nacera Aouaz
  • Nassima Dairi
Original Paper


Superabsorbent composites made of chitosan-graft-polyacrylamide and carboxymethylcellulose (CTS-g-PAAm/CMC) were prepared through free radical graft copolymerization of acrylamide (AAm) onto chitosan backbone, and the obtained superabsorbents were also partially hydrolyzed. The formation of the grafted network was evidenced by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) showed a porous structure. TGA studies revealed that the synthesized CTS-g-PAAm hydrogels are thermally more stable than CTS or PAAm compounds and the addition of the CMC in the network slightly affects the thermal stability. The effects of some polymerization variables, including the contents of CTS, crosslinker, CMC and hydrolysis treatment on the swelling capacities of the superabsorbents were examined in distilled water, saline solution (NaCl 0.9 wt%) and various pH solutions. The water absorbency decreased upon increasing the CTS content in the network, while it enhanced by adding CMC with highest value at 2 wt% of CMC. The swelling kinetics was found to obey second-order model. Also, the hydrolysis not only greatly optimized the absorption capacities but also improved the swelling rates, salt-resistant abilities and pH responsiveness. The optimized composites displayed a good reswelling ability. The antimicrobial activity assays against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) showed moderate inhibition of bacteria growth. Besides, the presence of CMC in the composites affected the enzymatic degradation rates in both lysozyme and active slurry solutions but without significantly changing their whole biodegradability. These results suggest that these materials are promising candidates for technical applications, especially in wastewater purification.


Superabsorbent polymers Chitosan Carboxymethylcellulose Swelling behavior Enzymatic degradation 


  1. 1.
    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials. Iran. Polym J 17:451–477Google Scholar
  2. 2.
    Chang CY, Duan B, Cai J, Zhang LN (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100. doi: 10.1016/j.eurpolymj.2009.04.033 CrossRefGoogle Scholar
  3. 3.
    Seki Y, Altinisik A, Demircioǧlu B, Tetik C (2014) Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization. Cellulose 21:1689–1698. doi: 10.1007/s10570-014-0204-8 CrossRefGoogle Scholar
  4. 4.
    Pourjavadi A, Jahromi PE, Seidi F, Salimi H (2010) Synthesis and swelling behavior of acrylated starch-g-poly(acrylic acid) and acrylated starch-g-poly(acrylamide) hydrogels. Carbohydr Polym 79:933–940. doi: 10.1016/j.carbpol.2009.10.021 CrossRefGoogle Scholar
  5. 5.
    Kuang J, Yuk KY, Huh KM (2011) Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr Polym 83:284–290. doi: 10.1016/j.carbpol.2010.07.052 CrossRefGoogle Scholar
  6. 6.
    Bardajee GR, Pourjavadi A, Soleyman R (2011) Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone. J Polym Res 18:337–346. doi: 10.1007/s10965-010-9423-3 CrossRefGoogle Scholar
  7. 7.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites. Polym Composit 32:277–289. doi: 10.1002/pc.21046 CrossRefGoogle Scholar
  8. 8.
    Tang H, Chen H, Duan B, Lu A, Zhang L (2014) Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J Mater Sci 49:2235–2242. doi: 10.1007/s10853-013-7918-0 CrossRefGoogle Scholar
  9. 9.
    Zhou Y, Fu S, Zhang L, Zhan H (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr Polym 97:429–435. doi: 10.1016/j.carbpol.2013.04.088 CrossRefGoogle Scholar
  10. 10.
    Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydr Polym 74:215–219. doi: 10.1016/j.carbpol.2008.02.008 CrossRefGoogle Scholar
  11. 11.
    Yang L, Yang Y, Chen Z, Guo C, Li S (2014) Influence of superabsorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol Eng 62:27–32. doi: 10.1016/j.ecoleng.2013.10.019 CrossRefGoogle Scholar
  12. 12.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45:5711–5735. doi: 10.1007/s10853-010-4780-1 CrossRefGoogle Scholar
  13. 13.
    Prasad M, Saxena S (2004) Sorption mechanism of some divalent metal ions onto low-cost mineral adsorbent. Ind Eng Chem Res 43:1512–1522. doi: 10.1021/ie030152d CrossRefGoogle Scholar
  14. 14.
    Mellegard H, Strand SP, Christensen BE, Granum PE, Hardy SP (2011) Antibacterial activity of chemically defined chitosans: influence of molecular weight, degree of acetylation and test organism. Int J Food Microbiol 148:48–54. doi: 10.1016/j.ijfoodmicro.2011.04.023 CrossRefGoogle Scholar
  15. 15.
    Muzzarelli RAA (2012) Nanochitins and nanochitosans, paving the way to eco-friendly and energy-saving exploitation of marine resources. Polym Sci A Compr Ref 10:153–164. doi: 10.1016/B978-0-444-53349-4.00257-0 CrossRefGoogle Scholar
  16. 16.
    Li Wang, Zhang J, Wang A (2011) Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly(acrylic acid)/attapulgite composite. Desalination 266:33–39. doi: 10.1016/j.desal.2010.07.065 CrossRefGoogle Scholar
  17. 17.
    Shankar P, Gomathi T, Vijayalakshmi K, Sudha PN (2014) Comparative studies on the removal of heavy metals ions onto crosslinked chitosan-g-acrylonitrile copolymer. Int J Biol Macromol 67:180–188. doi: 10.1016/j.ijbiomac.2014.03.010 CrossRefGoogle Scholar
  18. 18.
    Maity J, Ray SK (2014) Enhanced adsorption of methyl violet and congo red by using semi and full IPN of polymethacrylic acid and chitosan. Carbohydr Polym 104:8–16. doi: 10.1016/j.carbpol.2013.12.086 CrossRefGoogle Scholar
  19. 19.
    Huang D, Wang W, Kang Y, Wang A (2012) Efficient adsorption and recovery of Pb(II) from aqueous solution by a granular pH-sensitive chitosan-based semi-IPN hydrogel. J Macromol Sci Part A Pure Appl Chem 49:971–979. doi: 10.1080/10601325.2012.722859 CrossRefGoogle Scholar
  20. 20.
    Wang W, Huang D, Kang Y, Wang A (2013) One-step in situ fabrication of granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf B: Biointerfaces 106:51–59. doi: 10.1016/j.colsurfb.2013.01.030 CrossRefGoogle Scholar
  21. 21.
    Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. Chem Eng J 243:572–590. doi: 10.1016/j.cej.2014.01.065 CrossRefGoogle Scholar
  22. 22.
    Mandal B, Ray SK (2013) Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethylmethacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water. Carbohydr Polym 98:257–269. doi: 10.1016/j.carbpol.2013.05.093 CrossRefGoogle Scholar
  23. 23.
    Wang J, Liu F, Wei J (2011) Enhanced adsorption properties of interpenetrating polymer network hydrogels for heavy metal ion removal. Polym Bull 67:1709–1720. doi: 10.1007/s00289-011-0579-8 CrossRefGoogle Scholar
  24. 24.
    Bhattacharyya R, Ray SK (2013) Kinetic and equilibrium modeling for adsorption of textile dyes in aqueous solutions by carboxymethylcellulose/poly(acrylamide-co-hydroxyethyl methacrylate) semi-interpenetrating network hydrogel. Polym Eng Sci 53:2439–2453. doi: 10.1002/pen.23501 CrossRefGoogle Scholar
  25. 25.
    Yan H, Zhang W, Kan X, Dong L, Jiang Z, Li H et al (2011) Sorption of methylene blue by carboxymethyl cellulose and reuse process in a secondary sorption. Colloids Surf A Physicochem Eng Asp 380:143–151. doi: 10.1016/j.colsurfa.2011.02.045 CrossRefGoogle Scholar
  26. 26.
    Silverstein RM, Bassler GC, Morril TC (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, New YorkGoogle Scholar
  27. 27.
    Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131:9747–9761. doi: 10.1002/app.39747 CrossRefGoogle Scholar
  28. 28.
    Shi W, Dumont MJ, Ly EB (2014) Synthesis and properties of canola protein-based superabsorbent hydrogels. Eur polym J 54:172–180. doi: 10.1016/j.eurpolymj.2014.03.007 CrossRefGoogle Scholar
  29. 29.
    Zhang G, Yi L, Deng H, Sun P (2014) Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent. J Environ Sci 26:1203–1211. doi: 10.1016/S1001-0742(13)60513-6 CrossRefGoogle Scholar
  30. 30.
    Zhao Q, Sun J, Lin Y, Zhou Q (2010) Superabsorbency, study of the properties of hydrolyzed polyacrylamide hydrogels with various pore structures and rapid pH-sensitivities. React Funct Polym 70:602–609. doi: 10.1016/j.reactfunctpolym.2010.04.010 CrossRefGoogle Scholar
  31. 31.
    Pourjavadi A, Mahdavinia GR (2006) Superabsorbency, pH-Sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels. Turk J Chem 30:595–608Google Scholar
  32. 32.
    Dragan ES, Perju MM, Dinu MV (2012) Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr Polym 88:270–281. doi: 10.1016/j.carbpol.2011.12.002 CrossRefGoogle Scholar
  33. 33.
    Sadeghi M, Heidari B (2011) Crosslinked graft copolymer of methacrylic acid and gelatin as a novel hydrogel with pH-responsiveness properties. Materials 4:543–552. doi: 10.3390/ma4030543 CrossRefGoogle Scholar
  34. 34.
    Kaith BS, Jindal R, Mittal H, Kumar K (2012) Synthesis, characterization, and swelling behavior evaluation of hydrogels based on gum ghatti and acrylamide for selective absorption of saline from different petroleum fraction-saline emulsions. J Appl Polym Sci 124:2037–2047. doi: 10.1002/app.35238 CrossRefGoogle Scholar
  35. 35.
    Pourjavadi A, Zeidabadi F, Barzegar SH (2010) Alginate-based biodegradable superabsorbents as candidates for diclofenac sodium delivery systems. J Appl Polym Sci 118:2015–2023. doi: 10.1002/app.32205 Google Scholar
  36. 36.
    Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68:367–374. doi: 10.1016/j.carbpol.2006.11.018 CrossRefGoogle Scholar
  37. 37.
    Zhou C, Wu Q (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloid Surf B 84:155–162. doi: 10.1016/j.colsurfb.2010.12.030 CrossRefGoogle Scholar
  38. 38.
    Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interf Sci 353:116–123. doi: 10.1016/j.jcis.2010.09.035 CrossRefGoogle Scholar
  39. 39.
    Han HD, Nam DE, Seo DH, Kim TW, Shin BC, Choi HS (2004) Preparation and biodegradation of thermosensitive chitosan hydrogel as a function of pH and temperature. Macromol Res 12:507–511. doi: 10.1007/BF03218435 CrossRefGoogle Scholar
  40. 40.
    Chang C, Chen S, Zhang L (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21:3865–3871. doi: 10.1039/C0JM03075A CrossRefGoogle Scholar
  41. 41.
    Tang H, Chen H, Duan B, Lu A, Zhang L (2014) Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J Mater Sci 49:2235–2242. doi: 10.1007/s10853-013-7918-0 CrossRefGoogle Scholar
  42. 42.
    Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80:1028–1036. doi: 10.1016/j.carbpol.2010.01.020 CrossRefGoogle Scholar
  43. 43.
    Zhou Y, Fu S, Zhang L, Zhan H (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydr Polym 97:429–435. doi: 10.1016/j.carbpol.2013.04.088 CrossRefGoogle Scholar
  44. 44.
    Zhao Y, Kang J, Tan T (2006) Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer 47:7702–7710. doi: 10.1016/j.polymer.2006.08.056 CrossRefGoogle Scholar
  45. 45.
    Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33:7475–7480. doi: 10.1021/ma0007029 CrossRefGoogle Scholar
  46. 46.
    Çaykara T, Doǧmuş M, Kantoǧlu Ő (2004) Network structure and swelling–shrinking behaviors of pH-sensitive Poly(acrylamide-co-itaconic acid) hydrogels. J Polym Sci Part B Pol Phys 42:2586–2594. doi: 10.1002/polb.20129 CrossRefGoogle Scholar
  47. 47.
    Chang A (2015) pH-sensitive starch-g-poly(acrylic acid)/sodium alginate hydrogels for controlled release of diclofenac sodium. Iran Polym J 24:161–169. doi: 10.1007/s13726-015-0311-x CrossRefGoogle Scholar
  48. 48.
    El-Sayed M, Sorour M, Abd-El-Moneem N, Talaat H, Shalaan H, El-Marsafy N (2011) Synthesis and properties of natural polymers-grafted-acrylamide. World Appl Sci J 13:360–368 (ISNN 1818-4952) Google Scholar
  49. 49.
    Wu F, Zhang Y, Liu L, Yao J (2012) Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste. Carbohydr Polym 87:2519–2525. doi: 10.1016/j.carbpol.2011.11.028 CrossRefGoogle Scholar
  50. 50.
    Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J. Control Release 102:3–12. doi: 10.1016/j.jconrel.2004.09.028 CrossRefGoogle Scholar
  51. 51.
    Schott H (1992) Swelling kinetics of polymers. J Macromol Sci Part B Phys 31:1–9. doi: 10.1080/00222349208215453 CrossRefGoogle Scholar
  52. 52.
    Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ (1999) Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). J Appl Polym Sci 73:113–120. doi: 10.1002/(SICI)1097-4628(19990705) CrossRefGoogle Scholar
  53. 53.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87:2038–2045. doi: 10.1016/j.carbpol.2011.10.017 CrossRefGoogle Scholar
  54. 54.
    Pereda M, Ponce AG, Marcovich NE, Ruseckaite RA, Martucci JF (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloid 25:1372–1381. doi: 10.1016/j.foodhyd.2011.01.001 CrossRefGoogle Scholar
  55. 55.
    Liu N, Chen XG, Park HJ, Liu CG, Liu CS, Meng XH, Yu LJ (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr Polym 64:60–65. doi: 10.1007/s00421-008-0955-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hafida Ferfera-Harrar
    • 1
    Email author
  • Nacera Aouaz
    • 1
  • Nassima Dairi
    • 1
  1. 1.Materials Polymer Laboratory, Department of Macromolecular Chemistry, Faculty of ChemistryUniversity of Sciences and Technology Houari, Boumediene (USTHB)AlgiersAlgeria

Personalised recommendations