Polymer Bulletin

, Volume 72, Issue 4, pp 693–711 | Cite as

Effects of process method and quiescent coarsening on dispersed-phase size distribution in polymer blends: comparison of solid-state shear pulverization with intensive batch melt mixing

Original Paper


We compare how solid-state shear pulverization (SSSP), batch melt mixing (BMM), and static melt-state annealing affect the morphology of an immiscible blend of polypropylene (PP) and ethylene-α-olefin copolymer (EOC). For 85/15 wt% PP/EOC blends, SSSP and BMM led to log-normal distributions of dispersed-phase particle size. The SSSP blend had smaller average particle diameters (e.g., Dn = 0.24 μm) and a narrower particle size distribution (e.g., Dw/Dn = 1.17; Dv/Dn = 1.56) than the BMM blend (Dn = 0.28 μm; Dw/Dn = 1.25; Dv/Dn = 1.79). The fact that BMM is subject to thermodynamically and flow-induced coalescence while SSSP is not, can lead to smaller particle sizes and a narrower distribution by SSSP. Although annealing at 200 °C for 30 and 90 min led to continuous growth of average particle size in the BMM blend, the particle-size dispersity remained virtually unchanged. In contrast, after 30-min annealing at 200 °C, the SSSP blend showed less growth in \(D_{{_{n} }}^{{^{3} }}\) than the BMM blend but a dramatic increase in particle-size dispersity and a loss of the log-normal size distribution. Between 30 and 90 min, there was at most slight growth in \(D_{{_{n} }}^{{^{3} }}\), consistent with partial compatibilization caused by in situ block copolymer formation during SSSP, and major reductions in Dw/Dn and Dv/Dn close to those of the BMM blend and recovery of the log-normal size distribution. These results suggest that caution should be used in correlating immiscible blend properties to a particular average particle size as that value may not reflect possible complexity of the underlying size distribution.


Solid-state shear pulverization Batch melt mixing Coarsening Immiscible polymer blend Particle-size distribution Compatibilization 


  1. 1.
    Koning C (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23:707–757CrossRefGoogle Scholar
  2. 2.
    Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657CrossRefGoogle Scholar
  3. 3.
    Macosko CW, Guegan P, Khandpur AK, Nakayama A, Marechal P, Inoue T (1996) Compatibilizers for melt blending: premade block copolymers. Macromolecules 29:5590–5598CrossRefGoogle Scholar
  4. 4.
    Utracki LA (1990) Polymer alloys and blends: thermodynamics and rheology. Hanser Publishers, New York, p 356Google Scholar
  5. 5.
    Barlow JW, Paul DR (1981) Polymer blends and alloys-a review of selected considerations. Polym Eng Sci 21:985–996CrossRefGoogle Scholar
  6. 6.
    Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944CrossRefGoogle Scholar
  7. 7.
    Tucker CL III, Moldenaers P (2002) Microstructural evolution in polymer blends. Annu Rev Fluid Mech 34:177–210CrossRefGoogle Scholar
  8. 8.
    Wang D, Li Y, Xie X-M, Guo B-H (2011) Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 52:191–200CrossRefGoogle Scholar
  9. 9.
    Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers. Polymer 40:2331–2346CrossRefGoogle Scholar
  10. 10.
    Chen J, Cao Y, Li H (2010) The effect of propylene—ethylene copolymers with different comonomer content on melting and crystallization behavior of polypropylene. J Appl Polym Sci 116:1172–1183Google Scholar
  11. 11.
    Galeski A (2003) Strength and toughness of crystalline polymer systems. Prog Polym Sci 28:1643–1699CrossRefGoogle Scholar
  12. 12.
    Frounchi M, Dadbin S, Salehpour Z, Noferesti M (2006) Gas barrier properties of PP/EPDM blend nanocomposites. J Memb Sci 282:142–148CrossRefGoogle Scholar
  13. 13.
    Kontopoulou M, Wang W, Gopakumar TG, Cheung C (2003) Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-α-olefin copolymer/polypropylene blends. Polymer 44:7495–7504CrossRefGoogle Scholar
  14. 14.
    Wu S (1988) A generalized criterion for rubber toughening: the critical matrix ligament thickness. J Appl Polym Sci 35:549–561CrossRefGoogle Scholar
  15. 15.
    Liu ZH, Zhang XD, Zhu XG et al (1997) Effect of morphology on the brittle ductile transition of polymer blends: 1. A new equation for correlating morphological parameters. Polymer 38:5267–5273CrossRefGoogle Scholar
  16. 16.
    Argon AS, Cohen RE (2003) Toughenability of polymers. Polymer 44:6013–6032CrossRefGoogle Scholar
  17. 17.
    Xiong K, Wang L, Cai T, Zhang A, Zeng X (2012) Synthesis of POE-graft-methyl methacrylate and acrylonitrile and its toughening effect on SAN resin. Polym Bull 69:527–544CrossRefGoogle Scholar
  18. 18.
    Geng C, Su J, Han S, Wang K, Fu Q (2013) Hierarchical structure and unique impact behavior of polypropylene/ethylene-octene copolymer blends as obtained via dynamic packing injection molding. Polymer 54:3392–3401CrossRefGoogle Scholar
  19. 19.
    Feng Y, Hu Y, Yin J, Zhao G, Jiang W (2013) High impact poly(lactic acid)/poly(ethylene octene) blends prepared by reactive blending. Polym Eng Sci 53:389–396CrossRefGoogle Scholar
  20. 20.
    Zhou C, Liu H, Chen M, Wu G, Zhang H (2012) Toughening of polyvinylchloride by methyl methacrylate–butadiene–styrene core–shell rubber particles: influence of rubber particle size. Polym Eng Sci 52:2523–2529CrossRefGoogle Scholar
  21. 21.
    Li K, Huang H-X (2012) Detecting impact toughness of polypropylene/poly(ethylene-co-octene) blends with various morphologies induced via chaotic and shear mixing. Polym Eng Sci 52:2157–2166CrossRefGoogle Scholar
  22. 22.
    Rinawa K, Maiti SN, Sonnier R, Lopez Cuesta J-M (2014) Influence of microstructure and flexibility of maleated styrene-b-(ethylene-co-butylene)-b-styrene rubber on the mechanical properties of polyamide 12. Polym Bull 71:1131–1152CrossRefGoogle Scholar
  23. 23.
    Dubnikova IL, Berezina SM, Antonov AV (2004) Effect of rigid particle size on the toughness of filled polypropylene. J Appl Polym Sci 94:1917–1926CrossRefGoogle Scholar
  24. 24.
    Weon J-I, Sue H-J (2006) Mechanical properties of talc- and CaCO3-reinforced high-crystallinity polypropylene composites. J Mater Sci 41:2291–2300CrossRefGoogle Scholar
  25. 25.
    Zuiderduin WCJ, Westzaan C, Huetink J, Gaymans RJ (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44:261–275CrossRefGoogle Scholar
  26. 26.
    Tiwari RR, Paul DR (2011) Polypropylene-elastomer (TPO) nanocomposites: 1. Morphology. Polymer 52:4955–4969CrossRefGoogle Scholar
  27. 27.
    Bailly M, Kontopoulou M (2009) Preparation and characterization of thermoplastic olefin/nanosilica composites using a silane-grafted polypropylene matrix. Polymer 50:2472–2480CrossRefGoogle Scholar
  28. 28.
    D’Orazio L, Mancarella C, Martuscelli E, Polato F (1991) Polypropylene/ethylene-co-propylene blends: influence of molecular structure and composition of EPR on melt rheology, morphology and impact properties of injection-moulded samples. Polymer 32:1186–1194CrossRefGoogle Scholar
  29. 29.
    Perkins WG (1999) Polymer toughness and impact resistance. Polym Eng Sci 39:2445–2460CrossRefGoogle Scholar
  30. 30.
    Bucknall CB, Paul DR (2009) Notched impact behavior of polymer blends: Part 1: new model for particle size dependence. Polymer 50:5539–5548CrossRefGoogle Scholar
  31. 31.
    Premphet K, Paecharoenchai W (2001) Quantitative characterization of dispersed particle size, size distribution, and matrix ligament thickness in polypropylene blended with metallocene ethylene–octene copolymers. J Appl Polym Sci 82:2140–2149CrossRefGoogle Scholar
  32. 32.
    Premphet K, Paecharoenchai W (2002) Polypropylene/metallocene ethylene-octene copolymer blends with a bimodal particle size distribution: mechanical properties and their controlling factors. J Appl Polym Sci 85:2412–2418CrossRefGoogle Scholar
  33. 33.
    Huang JJ, Keskkula H, Paul DR (2006) Comparison of the toughening behavior of nylon 6 versus an amorphous polyamide using various maleated elastomers. Polymer 47:639–651CrossRefGoogle Scholar
  34. 34.
    Oshinski AJ, Keskkula H, Paul DR (1992) Rubber toughening of polyamides with functionalized block copolymers: 1. Nylon-6. Polymer 33:268–283CrossRefGoogle Scholar
  35. 35.
    Dompas D, Groeninckx G (1994) Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 1. A criterion for internal rubber cavitation. Polymer 35:4743–4749CrossRefGoogle Scholar
  36. 36.
    Dompas D, Groeninckx G, Isogawa M et al (1994) Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 2. Rubber cavitation behaviour in poly (vinyl chloride)/methyl methacrylate-butadiene styrene graft copolymer blends. Polymer 35:4750–4759CrossRefGoogle Scholar
  37. 37.
    Van der Wal A, Verheul AJJ, Gaymans RJ (1999) Polypropylene–rubber blends: 4. The effect of the rubber particle size on the fracture behaviour at low and high test speed. Polymer 40:6057–6065CrossRefGoogle Scholar
  38. 38.
    Tiwari RR, Hunter DL, Paul DR (2012) Extruder-made TPO nanocomposites. I. Effect of maleated polypropylene and organoclay ratio on the morphology and mechanical properties. J Polym Sci Part B Polym Phys 50:1577–1588CrossRefGoogle Scholar
  39. 39.
    Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18:963–974CrossRefGoogle Scholar
  40. 40.
    Datta S (1996) Polymeric compatibilizers: uses and benefits in polymer blends. Hanser Publishers, New York, p 542Google Scholar
  41. 41.
    Macosko CW, Jeon HK, Hoye TR (2005) Reactions at polymer–polymer interfaces for blend compatibilization. Prog Polym Sci 30:939–947CrossRefGoogle Scholar
  42. 42.
    Lebovitz AH, Khait K, Torkelson JM (2002) Stabilization of dispersed phase to static coarsening: polymer blend compatibilization via solid-state shear pulverization. Macromolecules 35:8672–8675CrossRefGoogle Scholar
  43. 43.
    Lebovitz AH, Khait K, Torkelson JM (2002) In situ block copolymer formation during solid-state shear pulverization: an explanation for blend compatibilization via interpolymer radical reactions. Macromolecules 35:9716–9722CrossRefGoogle Scholar
  44. 44.
    Anastasiadis SH, Gancarz I, Koberstein JT (1989) Compatibilizing effect of block copolymers added to the polymer/polymer interface. Macromolecules 22:1449–1453CrossRefGoogle Scholar
  45. 45.
    Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45:8809–8823CrossRefGoogle Scholar
  46. 46.
    Tao Y, Lebovitz AH, Torkelson JM (2005) Compatibilizing effects of block copolymer mixed with immiscible polymer blends by solid-state shear pulverization: stabilizing the dispersed phase to static coarsening. Polymer 46:4753–4761CrossRefGoogle Scholar
  47. 47.
    Tao Y, Kim J, Torkelson JM (2006) Achievement of quasi-nanostructured polymer blends by solid-state shear pulverization and compatibilization by gradient copolymer addition. Polymer 47:6773–6781CrossRefGoogle Scholar
  48. 48.
    Kim J, Gray MK, Zhou H, Nguyen ST, Torkelson JM (2005) Polymer blend compatibilization by gradient copolymer addition during melt processing: stabilization of dispersed phase to static coarsening. Macromolecules 38:1037–1040CrossRefGoogle Scholar
  49. 49.
    Kim J, Zhou H, Nguyen ST, Torkelson JM (2006) Synthesis and application of styrene/4-hydroxystyrene gradient copolymers made by controlled radical polymerization: compatibilization of immiscible polymer blends via hydrogen-bonding effects. Polymer 47:5799–5809CrossRefGoogle Scholar
  50. 50.
    Eastwood E, Viswanathan S, O’Brien CP, Kumar D, Dadmun MD (2005) Methods to improve the properties of polymer mixtures: optimizing intermolecular interactions and compatibilization. Polymer 46:3957–3970CrossRefGoogle Scholar
  51. 51.
    Kudva RA, Keskkula H, Paul DR (1998) Compatibilization of nylon 6/ABS blends using glycidyl methacrylate/methyl methacrylate copolymers. Polymer 39:2447–2460CrossRefGoogle Scholar
  52. 52.
    Xu Y, Thurber CM, Macosko CW, Lodge TP, Hillmyer MA (2014) Poly(methyl methacrylate)-block-polyethylene-block-poly(methyl methacrylate) triblock copolymers as compatibilizers for polyethylene/poly(methyl methacrylate) blends. Ind Eng Chem Res 53:4718–4725CrossRefGoogle Scholar
  53. 53.
    Hashimoto T, Itakura M, Hasegawa H (1986) Late stage spinodal decomposition of a binary polymer mixture. I. Critical test of dynamical scaling on scattering function. J Chem Phys 85:6118CrossRefGoogle Scholar
  54. 54.
    Crist B, Nesarikar AR (1995) Coarsening in polyethylene-copolymer blends. Macromolecules 28:890–896CrossRefGoogle Scholar
  55. 55.
    Song S, Torkelson JM (1995) Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions. J Memb Sci 98:209–222CrossRefGoogle Scholar
  56. 56.
    Fortelný I, Jůza J, Dimzoski B (2012) Coalescence in quiescent polymer blends with a high content of the dispersed phase. Eur Polym J 48:1230–1240CrossRefGoogle Scholar
  57. 57.
    Stachurski ZH, Edward GH, Yin M, Long Y (1996) Particle coarsening in polypropylene/oolyethylene blends. Macromolecules 29:2131–2137CrossRefGoogle Scholar
  58. 58.
    Wallheinke K, Pötschke P, Stutz H (1997) Influence of compatibilizer addition on particle size and coalescence in TPU/PP blends. J Appl Polym Sci 65:2217–2226CrossRefGoogle Scholar
  59. 59.
    Wildes G, Keskkula H, Paul D (1999) Coalescence in PC/SAN blends: effect of reactive compatibilization and matrix phase viscosity. Polymer 40:5609–5621CrossRefGoogle Scholar
  60. 60.
    Chen X-H, Yu P, Kostromin S, Bronnikov S (2013) Minor-phase particles evolution in a polyethylene/ethylene-propylene copolymer (80/20) blend across mixing: breakup and coalescence. J Appl Polym Sci 130:3421–3431CrossRefGoogle Scholar
  61. 61.
    Yu W, Zhou C, Inoue T (2000) A coalescence mechanism for the coarsening behavior of polymer blends during a quiescent annealing process. II. Polydispersed particle system. J Polym Sci Part B Polym Phys 38:2390–2399CrossRefGoogle Scholar
  62. 62.
    Jia X, Listak J, Witherspoon V, Kalu EE, Yang X, Bockstaller MR (2010) Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals. Langmuir 26:12190–12197CrossRefGoogle Scholar
  63. 63.
    Cheng TW, Keskkula H, Paul DR (1992) Effect of melt annealing on the morphology and properties of polycarbonate blends. J Appl Polym Sci 45:1245–1263CrossRefGoogle Scholar
  64. 64.
    Lebovitz AH, Khait K, Torkelson JM (2003) Sub-micron dispersed-phase particle size in polymer blends: overcoming the Taylor limit via solid-state shear pulverization. Polymer 44:199–206CrossRefGoogle Scholar
  65. 65.
    Masuda J, Torkelson JM (2008) Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41:5974–5977CrossRefGoogle Scholar
  66. 66.
    Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Polymer—graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 41:1905–1908CrossRefGoogle Scholar
  67. 67.
    Wakabayashi K, Brunner PJ, Masuda J, Hewlett SA, Torkelson JM (2010) Polypropylene-graphite nanocomposites made by solid-state shear pulverization: effects of significantly exfoliated, unmodified graphite content on physical, mechanical and electrical properties. Polymer 51:5525–5531CrossRefGoogle Scholar
  68. 68.
    Iyer KA, Torkelson JM (2013) Novel, synergistic composites of polypropylene and rice husk ash: sustainable resource hybrids prepared by solid-state shear pulverization. Polym Compos 34:1211–1221CrossRefGoogle Scholar
  69. 69.
    Iyer KA, Torkelson JM (2014) Green composites of polypropylene and eggshell: effective biofiller size reduction and dispersion by single-step processing with solid-state shear pulverization. Compos Sci Technol 102:152–160CrossRefGoogle Scholar
  70. 70.
    Brunner PJ, Clark JT, Torkelson JM, Wakabayashi K (2012) Processing-structure-property relationships in solid-state shear pulverization: parametric study of specific energy. Polym Eng Sci 52:1555–1564CrossRefGoogle Scholar
  71. 71.
    Diop MF, Torkelson JM (2013) Maleic anhydride functionalization of polypropylene with suppressed molecular weight reduction via solid-state shear pulverization. Polymer 54:4143–4154CrossRefGoogle Scholar
  72. 72.
    Diop MF, Torkelson JM (2013) Ester functionalization of polypropylene via controlled decomposition of benzoyl peroxide during solid-state shear pulverization. Macromolecules 46:7834–7844CrossRefGoogle Scholar
  73. 73.
    Diop MF, Burghardt WR, Torkelson JM (2014) Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization. Polymer 55:4948–4958CrossRefGoogle Scholar
  74. 74.
    Jiang X, Drzal LT (2012) Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J Appl Polym Sci 124:525–535CrossRefGoogle Scholar
  75. 75.
    Iwamoto S, Yamamoto S, Lee S-H, Endo T (2014) Solid-state shear pulverization as effective treatment for dispersing lignocellulose nanofibers in polypropylene composites. Cellulose 21:1573–1580CrossRefGoogle Scholar
  76. 76.
    Maric M, Macosko CW (2001) Improving polymer blend dispersions in mini-mixers. Polym Eng Sci 41:118–130CrossRefGoogle Scholar
  77. 77.
    Sundararaj U, Macosko CW, Nakayama A, Inoue T (1995) Milligrams to kilograms: an evaluation of mixers for reactive polymer blending. Polym Eng Sci 35:100–114CrossRefGoogle Scholar
  78. 78.
    Tiwari RR, Paul DR (2011) Polypropylene-elastomer (TPO) nanocomposites: 2. Room temperature Izod impact strength and tensile properties. Polymer 52:5595–5605CrossRefGoogle Scholar
  79. 79.
    Wu S (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26:1855–1863CrossRefGoogle Scholar
  80. 80.
    Irani RR (1963) Particle size: measurement, interpretation, and application. Wiley, New York, p 165Google Scholar
  81. 81.
    Paul DR, Barlow JW (1980) Polymer Blends. J Macromol Sci Part C Polym Rev 18:109–168CrossRefGoogle Scholar
  82. 82.
    Mirabella FM (1994) Phase separation and the kinetics of phase coarsening in commercial impact polypropylene copolymers. J Polym Sci Part B Polym Phys 32:1205–1216CrossRefGoogle Scholar
  83. 83.
    Pang Y, Dong X, Zhao Y, Han CC, Wang D (2011) Phase separation induced morphology evolution and corresponding impact fracture behavior of iPP/PEOc blends. J Appl Polym Sci 121:445–453CrossRefGoogle Scholar
  84. 84.
    Dimzoski B, Fortelný I, Šlouf M, Nevoralova M, Mikesova J, Michalkova D (2011) Coalescence during annealing of quiescent immiscible polymer blends. e-Polymers 11:1–12CrossRefGoogle Scholar
  85. 85.
    Mae H, Omiya M, Kishimoto K (2008) Tensile behavior of polypropylene blended with bimodal distribution of styrene-ethylene-butadiene-etyrene particle size. J Appl Polym Sci 107:3520–3528CrossRefGoogle Scholar
  86. 86.
    Jang BZ, Uhlmann DR, Vander Sande JB (1985) The rubber particle size dependence of crazing in polypropylene. Polym Eng Sci 25:643–651CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations