Polymer Bulletin

, Volume 72, Issue 4, pp 693–711 | Cite as

Effects of process method and quiescent coarsening on dispersed-phase size distribution in polymer blends: comparison of solid-state shear pulverization with intensive batch melt mixing

  • Mirian F. Diop
  • John M. TorkelsonEmail author
Original Paper


We compare how solid-state shear pulverization (SSSP), batch melt mixing (BMM), and static melt-state annealing affect the morphology of an immiscible blend of polypropylene (PP) and ethylene-α-olefin copolymer (EOC). For 85/15 wt% PP/EOC blends, SSSP and BMM led to log-normal distributions of dispersed-phase particle size. The SSSP blend had smaller average particle diameters (e.g., D n = 0.24 μm) and a narrower particle size distribution (e.g., D w/D n = 1.17; D v/D n = 1.56) than the BMM blend (D n = 0.28 μm; D w/D n = 1.25; D v/D n = 1.79). The fact that BMM is subject to thermodynamically and flow-induced coalescence while SSSP is not, can lead to smaller particle sizes and a narrower distribution by SSSP. Although annealing at 200 °C for 30 and 90 min led to continuous growth of average particle size in the BMM blend, the particle-size dispersity remained virtually unchanged. In contrast, after 30-min annealing at 200 °C, the SSSP blend showed less growth in \(D_{{_{n} }}^{{^{3} }}\) than the BMM blend but a dramatic increase in particle-size dispersity and a loss of the log-normal size distribution. Between 30 and 90 min, there was at most slight growth in \(D_{{_{n} }}^{{^{3} }}\), consistent with partial compatibilization caused by in situ block copolymer formation during SSSP, and major reductions in D w/D n and D v/D n close to those of the BMM blend and recovery of the log-normal size distribution. These results suggest that caution should be used in correlating immiscible blend properties to a particular average particle size as that value may not reflect possible complexity of the underlying size distribution.


Solid-state shear pulverization Batch melt mixing Coarsening Immiscible polymer blend Particle-size distribution Compatibilization 



We acknowledge support from a 3 M Graduate Fellowship (to M. F. D.), the Initiative for Sustainability and Energy at Northwestern (ISEN), and Northwestern University. This study used Central Facilities supported by the MRSEC program of the National Science Foundation at the Northwestern University Materials Research Science and Engineering Center.


  1. 1.
    Koning C (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23:707–757CrossRefGoogle Scholar
  2. 2.
    Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657CrossRefGoogle Scholar
  3. 3.
    Macosko CW, Guegan P, Khandpur AK, Nakayama A, Marechal P, Inoue T (1996) Compatibilizers for melt blending: premade block copolymers. Macromolecules 29:5590–5598CrossRefGoogle Scholar
  4. 4.
    Utracki LA (1990) Polymer alloys and blends: thermodynamics and rheology. Hanser Publishers, New York, p 356Google Scholar
  5. 5.
    Barlow JW, Paul DR (1981) Polymer blends and alloys-a review of selected considerations. Polym Eng Sci 21:985–996CrossRefGoogle Scholar
  6. 6.
    Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944CrossRefGoogle Scholar
  7. 7.
    Tucker CL III, Moldenaers P (2002) Microstructural evolution in polymer blends. Annu Rev Fluid Mech 34:177–210CrossRefGoogle Scholar
  8. 8.
    Wang D, Li Y, Xie X-M, Guo B-H (2011) Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 52:191–200CrossRefGoogle Scholar
  9. 9.
    Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers. Polymer 40:2331–2346CrossRefGoogle Scholar
  10. 10.
    Chen J, Cao Y, Li H (2010) The effect of propylene—ethylene copolymers with different comonomer content on melting and crystallization behavior of polypropylene. J Appl Polym Sci 116:1172–1183Google Scholar
  11. 11.
    Galeski A (2003) Strength and toughness of crystalline polymer systems. Prog Polym Sci 28:1643–1699CrossRefGoogle Scholar
  12. 12.
    Frounchi M, Dadbin S, Salehpour Z, Noferesti M (2006) Gas barrier properties of PP/EPDM blend nanocomposites. J Memb Sci 282:142–148CrossRefGoogle Scholar
  13. 13.
    Kontopoulou M, Wang W, Gopakumar TG, Cheung C (2003) Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-α-olefin copolymer/polypropylene blends. Polymer 44:7495–7504CrossRefGoogle Scholar
  14. 14.
    Wu S (1988) A generalized criterion for rubber toughening: the critical matrix ligament thickness. J Appl Polym Sci 35:549–561CrossRefGoogle Scholar
  15. 15.
    Liu ZH, Zhang XD, Zhu XG et al (1997) Effect of morphology on the brittle ductile transition of polymer blends: 1. A new equation for correlating morphological parameters. Polymer 38:5267–5273CrossRefGoogle Scholar
  16. 16.
    Argon AS, Cohen RE (2003) Toughenability of polymers. Polymer 44:6013–6032CrossRefGoogle Scholar
  17. 17.
    Xiong K, Wang L, Cai T, Zhang A, Zeng X (2012) Synthesis of POE-graft-methyl methacrylate and acrylonitrile and its toughening effect on SAN resin. Polym Bull 69:527–544CrossRefGoogle Scholar
  18. 18.
    Geng C, Su J, Han S, Wang K, Fu Q (2013) Hierarchical structure and unique impact behavior of polypropylene/ethylene-octene copolymer blends as obtained via dynamic packing injection molding. Polymer 54:3392–3401CrossRefGoogle Scholar
  19. 19.
    Feng Y, Hu Y, Yin J, Zhao G, Jiang W (2013) High impact poly(lactic acid)/poly(ethylene octene) blends prepared by reactive blending. Polym Eng Sci 53:389–396CrossRefGoogle Scholar
  20. 20.
    Zhou C, Liu H, Chen M, Wu G, Zhang H (2012) Toughening of polyvinylchloride by methyl methacrylate–butadiene–styrene core–shell rubber particles: influence of rubber particle size. Polym Eng Sci 52:2523–2529CrossRefGoogle Scholar
  21. 21.
    Li K, Huang H-X (2012) Detecting impact toughness of polypropylene/poly(ethylene-co-octene) blends with various morphologies induced via chaotic and shear mixing. Polym Eng Sci 52:2157–2166CrossRefGoogle Scholar
  22. 22.
    Rinawa K, Maiti SN, Sonnier R, Lopez Cuesta J-M (2014) Influence of microstructure and flexibility of maleated styrene-b-(ethylene-co-butylene)-b-styrene rubber on the mechanical properties of polyamide 12. Polym Bull 71:1131–1152CrossRefGoogle Scholar
  23. 23.
    Dubnikova IL, Berezina SM, Antonov AV (2004) Effect of rigid particle size on the toughness of filled polypropylene. J Appl Polym Sci 94:1917–1926CrossRefGoogle Scholar
  24. 24.
    Weon J-I, Sue H-J (2006) Mechanical properties of talc- and CaCO3-reinforced high-crystallinity polypropylene composites. J Mater Sci 41:2291–2300CrossRefGoogle Scholar
  25. 25.
    Zuiderduin WCJ, Westzaan C, Huetink J, Gaymans RJ (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44:261–275CrossRefGoogle Scholar
  26. 26.
    Tiwari RR, Paul DR (2011) Polypropylene-elastomer (TPO) nanocomposites: 1. Morphology. Polymer 52:4955–4969CrossRefGoogle Scholar
  27. 27.
    Bailly M, Kontopoulou M (2009) Preparation and characterization of thermoplastic olefin/nanosilica composites using a silane-grafted polypropylene matrix. Polymer 50:2472–2480CrossRefGoogle Scholar
  28. 28.
    D’Orazio L, Mancarella C, Martuscelli E, Polato F (1991) Polypropylene/ethylene-co-propylene blends: influence of molecular structure and composition of EPR on melt rheology, morphology and impact properties of injection-moulded samples. Polymer 32:1186–1194CrossRefGoogle Scholar
  29. 29.
    Perkins WG (1999) Polymer toughness and impact resistance. Polym Eng Sci 39:2445–2460CrossRefGoogle Scholar
  30. 30.
    Bucknall CB, Paul DR (2009) Notched impact behavior of polymer blends: Part 1: new model for particle size dependence. Polymer 50:5539–5548CrossRefGoogle Scholar
  31. 31.
    Premphet K, Paecharoenchai W (2001) Quantitative characterization of dispersed particle size, size distribution, and matrix ligament thickness in polypropylene blended with metallocene ethylene–octene copolymers. J Appl Polym Sci 82:2140–2149CrossRefGoogle Scholar
  32. 32.
    Premphet K, Paecharoenchai W (2002) Polypropylene/metallocene ethylene-octene copolymer blends with a bimodal particle size distribution: mechanical properties and their controlling factors. J Appl Polym Sci 85:2412–2418CrossRefGoogle Scholar
  33. 33.
    Huang JJ, Keskkula H, Paul DR (2006) Comparison of the toughening behavior of nylon 6 versus an amorphous polyamide using various maleated elastomers. Polymer 47:639–651CrossRefGoogle Scholar
  34. 34.
    Oshinski AJ, Keskkula H, Paul DR (1992) Rubber toughening of polyamides with functionalized block copolymers: 1. Nylon-6. Polymer 33:268–283CrossRefGoogle Scholar
  35. 35.
    Dompas D, Groeninckx G (1994) Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 1. A criterion for internal rubber cavitation. Polymer 35:4743–4749CrossRefGoogle Scholar
  36. 36.
    Dompas D, Groeninckx G, Isogawa M et al (1994) Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 2. Rubber cavitation behaviour in poly (vinyl chloride)/methyl methacrylate-butadiene styrene graft copolymer blends. Polymer 35:4750–4759CrossRefGoogle Scholar
  37. 37.
    Van der Wal A, Verheul AJJ, Gaymans RJ (1999) Polypropylene–rubber blends: 4. The effect of the rubber particle size on the fracture behaviour at low and high test speed. Polymer 40:6057–6065CrossRefGoogle Scholar
  38. 38.
    Tiwari RR, Hunter DL, Paul DR (2012) Extruder-made TPO nanocomposites. I. Effect of maleated polypropylene and organoclay ratio on the morphology and mechanical properties. J Polym Sci Part B Polym Phys 50:1577–1588CrossRefGoogle Scholar
  39. 39.
    Ide F, Hasegawa A (1974) Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer. J Appl Polym Sci 18:963–974CrossRefGoogle Scholar
  40. 40.
    Datta S (1996) Polymeric compatibilizers: uses and benefits in polymer blends. Hanser Publishers, New York, p 542Google Scholar
  41. 41.
    Macosko CW, Jeon HK, Hoye TR (2005) Reactions at polymer–polymer interfaces for blend compatibilization. Prog Polym Sci 30:939–947CrossRefGoogle Scholar
  42. 42.
    Lebovitz AH, Khait K, Torkelson JM (2002) Stabilization of dispersed phase to static coarsening: polymer blend compatibilization via solid-state shear pulverization. Macromolecules 35:8672–8675CrossRefGoogle Scholar
  43. 43.
    Lebovitz AH, Khait K, Torkelson JM (2002) In situ block copolymer formation during solid-state shear pulverization: an explanation for blend compatibilization via interpolymer radical reactions. Macromolecules 35:9716–9722CrossRefGoogle Scholar
  44. 44.
    Anastasiadis SH, Gancarz I, Koberstein JT (1989) Compatibilizing effect of block copolymers added to the polymer/polymer interface. Macromolecules 22:1449–1453CrossRefGoogle Scholar
  45. 45.
    Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45:8809–8823CrossRefGoogle Scholar
  46. 46.
    Tao Y, Lebovitz AH, Torkelson JM (2005) Compatibilizing effects of block copolymer mixed with immiscible polymer blends by solid-state shear pulverization: stabilizing the dispersed phase to static coarsening. Polymer 46:4753–4761CrossRefGoogle Scholar
  47. 47.
    Tao Y, Kim J, Torkelson JM (2006) Achievement of quasi-nanostructured polymer blends by solid-state shear pulverization and compatibilization by gradient copolymer addition. Polymer 47:6773–6781CrossRefGoogle Scholar
  48. 48.
    Kim J, Gray MK, Zhou H, Nguyen ST, Torkelson JM (2005) Polymer blend compatibilization by gradient copolymer addition during melt processing: stabilization of dispersed phase to static coarsening. Macromolecules 38:1037–1040CrossRefGoogle Scholar
  49. 49.
    Kim J, Zhou H, Nguyen ST, Torkelson JM (2006) Synthesis and application of styrene/4-hydroxystyrene gradient copolymers made by controlled radical polymerization: compatibilization of immiscible polymer blends via hydrogen-bonding effects. Polymer 47:5799–5809CrossRefGoogle Scholar
  50. 50.
    Eastwood E, Viswanathan S, O’Brien CP, Kumar D, Dadmun MD (2005) Methods to improve the properties of polymer mixtures: optimizing intermolecular interactions and compatibilization. Polymer 46:3957–3970CrossRefGoogle Scholar
  51. 51.
    Kudva RA, Keskkula H, Paul DR (1998) Compatibilization of nylon 6/ABS blends using glycidyl methacrylate/methyl methacrylate copolymers. Polymer 39:2447–2460CrossRefGoogle Scholar
  52. 52.
    Xu Y, Thurber CM, Macosko CW, Lodge TP, Hillmyer MA (2014) Poly(methyl methacrylate)-block-polyethylene-block-poly(methyl methacrylate) triblock copolymers as compatibilizers for polyethylene/poly(methyl methacrylate) blends. Ind Eng Chem Res 53:4718–4725CrossRefGoogle Scholar
  53. 53.
    Hashimoto T, Itakura M, Hasegawa H (1986) Late stage spinodal decomposition of a binary polymer mixture. I. Critical test of dynamical scaling on scattering function. J Chem Phys 85:6118CrossRefGoogle Scholar
  54. 54.
    Crist B, Nesarikar AR (1995) Coarsening in polyethylene-copolymer blends. Macromolecules 28:890–896CrossRefGoogle Scholar
  55. 55.
    Song S, Torkelson JM (1995) Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions. J Memb Sci 98:209–222CrossRefGoogle Scholar
  56. 56.
    Fortelný I, Jůza J, Dimzoski B (2012) Coalescence in quiescent polymer blends with a high content of the dispersed phase. Eur Polym J 48:1230–1240CrossRefGoogle Scholar
  57. 57.
    Stachurski ZH, Edward GH, Yin M, Long Y (1996) Particle coarsening in polypropylene/oolyethylene blends. Macromolecules 29:2131–2137CrossRefGoogle Scholar
  58. 58.
    Wallheinke K, Pötschke P, Stutz H (1997) Influence of compatibilizer addition on particle size and coalescence in TPU/PP blends. J Appl Polym Sci 65:2217–2226CrossRefGoogle Scholar
  59. 59.
    Wildes G, Keskkula H, Paul D (1999) Coalescence in PC/SAN blends: effect of reactive compatibilization and matrix phase viscosity. Polymer 40:5609–5621CrossRefGoogle Scholar
  60. 60.
    Chen X-H, Yu P, Kostromin S, Bronnikov S (2013) Minor-phase particles evolution in a polyethylene/ethylene-propylene copolymer (80/20) blend across mixing: breakup and coalescence. J Appl Polym Sci 130:3421–3431CrossRefGoogle Scholar
  61. 61.
    Yu W, Zhou C, Inoue T (2000) A coalescence mechanism for the coarsening behavior of polymer blends during a quiescent annealing process. II. Polydispersed particle system. J Polym Sci Part B Polym Phys 38:2390–2399CrossRefGoogle Scholar
  62. 62.
    Jia X, Listak J, Witherspoon V, Kalu EE, Yang X, Bockstaller MR (2010) Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals. Langmuir 26:12190–12197CrossRefGoogle Scholar
  63. 63.
    Cheng TW, Keskkula H, Paul DR (1992) Effect of melt annealing on the morphology and properties of polycarbonate blends. J Appl Polym Sci 45:1245–1263CrossRefGoogle Scholar
  64. 64.
    Lebovitz AH, Khait K, Torkelson JM (2003) Sub-micron dispersed-phase particle size in polymer blends: overcoming the Taylor limit via solid-state shear pulverization. Polymer 44:199–206CrossRefGoogle Scholar
  65. 65.
    Masuda J, Torkelson JM (2008) Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41:5974–5977CrossRefGoogle Scholar
  66. 66.
    Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Polymer—graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 41:1905–1908CrossRefGoogle Scholar
  67. 67.
    Wakabayashi K, Brunner PJ, Masuda J, Hewlett SA, Torkelson JM (2010) Polypropylene-graphite nanocomposites made by solid-state shear pulverization: effects of significantly exfoliated, unmodified graphite content on physical, mechanical and electrical properties. Polymer 51:5525–5531CrossRefGoogle Scholar
  68. 68.
    Iyer KA, Torkelson JM (2013) Novel, synergistic composites of polypropylene and rice husk ash: sustainable resource hybrids prepared by solid-state shear pulverization. Polym Compos 34:1211–1221CrossRefGoogle Scholar
  69. 69.
    Iyer KA, Torkelson JM (2014) Green composites of polypropylene and eggshell: effective biofiller size reduction and dispersion by single-step processing with solid-state shear pulverization. Compos Sci Technol 102:152–160CrossRefGoogle Scholar
  70. 70.
    Brunner PJ, Clark JT, Torkelson JM, Wakabayashi K (2012) Processing-structure-property relationships in solid-state shear pulverization: parametric study of specific energy. Polym Eng Sci 52:1555–1564CrossRefGoogle Scholar
  71. 71.
    Diop MF, Torkelson JM (2013) Maleic anhydride functionalization of polypropylene with suppressed molecular weight reduction via solid-state shear pulverization. Polymer 54:4143–4154CrossRefGoogle Scholar
  72. 72.
    Diop MF, Torkelson JM (2013) Ester functionalization of polypropylene via controlled decomposition of benzoyl peroxide during solid-state shear pulverization. Macromolecules 46:7834–7844CrossRefGoogle Scholar
  73. 73.
    Diop MF, Burghardt WR, Torkelson JM (2014) Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization. Polymer 55:4948–4958CrossRefGoogle Scholar
  74. 74.
    Jiang X, Drzal LT (2012) Reduction in percolation threshold of injection molded high-density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization. J Appl Polym Sci 124:525–535CrossRefGoogle Scholar
  75. 75.
    Iwamoto S, Yamamoto S, Lee S-H, Endo T (2014) Solid-state shear pulverization as effective treatment for dispersing lignocellulose nanofibers in polypropylene composites. Cellulose 21:1573–1580CrossRefGoogle Scholar
  76. 76.
    Maric M, Macosko CW (2001) Improving polymer blend dispersions in mini-mixers. Polym Eng Sci 41:118–130CrossRefGoogle Scholar
  77. 77.
    Sundararaj U, Macosko CW, Nakayama A, Inoue T (1995) Milligrams to kilograms: an evaluation of mixers for reactive polymer blending. Polym Eng Sci 35:100–114CrossRefGoogle Scholar
  78. 78.
    Tiwari RR, Paul DR (2011) Polypropylene-elastomer (TPO) nanocomposites: 2. Room temperature Izod impact strength and tensile properties. Polymer 52:5595–5605CrossRefGoogle Scholar
  79. 79.
    Wu S (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26:1855–1863CrossRefGoogle Scholar
  80. 80.
    Irani RR (1963) Particle size: measurement, interpretation, and application. Wiley, New York, p 165Google Scholar
  81. 81.
    Paul DR, Barlow JW (1980) Polymer Blends. J Macromol Sci Part C Polym Rev 18:109–168CrossRefGoogle Scholar
  82. 82.
    Mirabella FM (1994) Phase separation and the kinetics of phase coarsening in commercial impact polypropylene copolymers. J Polym Sci Part B Polym Phys 32:1205–1216CrossRefGoogle Scholar
  83. 83.
    Pang Y, Dong X, Zhao Y, Han CC, Wang D (2011) Phase separation induced morphology evolution and corresponding impact fracture behavior of iPP/PEOc blends. J Appl Polym Sci 121:445–453CrossRefGoogle Scholar
  84. 84.
    Dimzoski B, Fortelný I, Šlouf M, Nevoralova M, Mikesova J, Michalkova D (2011) Coalescence during annealing of quiescent immiscible polymer blends. e-Polymers 11:1–12CrossRefGoogle Scholar
  85. 85.
    Mae H, Omiya M, Kishimoto K (2008) Tensile behavior of polypropylene blended with bimodal distribution of styrene-ethylene-butadiene-etyrene particle size. J Appl Polym Sci 107:3520–3528CrossRefGoogle Scholar
  86. 86.
    Jang BZ, Uhlmann DR, Vander Sande JB (1985) The rubber particle size dependence of crazing in polypropylene. Polym Eng Sci 25:643–651CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations