Advertisement

Polymer Bulletin

, Volume 72, Issue 2, pp 371–385 | Cite as

Polyethylene crosslinked in different media: structural changes versus dielectric behaviour

  • Georgi Stamboliev
  • Dejan Milicevic
  • Maja Micic
  • Edin SuljovrujicEmail author
Original Paper

Abstract

Changes in the structure and dielectric properties of low-density polyethylene were created by gamma irradiation in air, deionised water and nitrogen. Role of irradiation media on dielectric and charge trapping behaviour was studied through dielectric loss and thermally stimulated discharge current measurements. Changes in magnitude, position and activation energy of all dielectric relaxations (γ, β and α) were found to be dependent on crosslinking and oxidative degradation, two competitive processes which can be tuned by radiation dose and media. Largest changes in the position and activation energy were found for the β relaxation due to its cooperative nature.

Keywords

XPE Gamma radiation Dielectric relaxations TSDC study Oxidation Crosslinking 

Notes

Acknowledgments

This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 172026).

References

  1. 1.
    Fouracre RA, MacGregor SJ, Judd M, Banford HM (1999) Condition monitoring of irradiated polymeric cables. Radiat Phys Chem 54(2):209–211CrossRefGoogle Scholar
  2. 2.
    Given MJ, Fouracre RA, MacGregor SJ, Judd M, Banford HM (2001) Diagnostic dielectric spectroscopy methods applied to water-treed cable. IEEE Trans Dielectr Electr Insul 8(6):917–920CrossRefGoogle Scholar
  3. 3.
    Singh A, Silverman JE (1991) Radiation processing of polymers. Hanser, MunichGoogle Scholar
  4. 4.
    Gumel AM, Annuar MSM, Heidelberg T (2013) Current application of controlled degradation processes in polymer modification and functionalization. J Appl Polym Sci 129(6):3079–3088CrossRefGoogle Scholar
  5. 5.
    Chodak I (1995) Properties of crosslinked polyolefin-based materials. Prog Polym Sci 20(6):1165–1199CrossRefGoogle Scholar
  6. 6.
    Dadbin S, Frounchi M, Saeid MH, Gangi F (2002) Molecular structure and physical properties of e-beam crosslinked low-density polyethylene for wire and cable insulation applications. J Appl Polym Sci 86(8):1959–1969CrossRefGoogle Scholar
  7. 7.
    Khonakdar HA, Jafari SH, Taheri M, Wagenknecht U, Jehnichen D, Haussler L (2006) Thermal and wide angle X-ray analysis of chemically and radiation-crosslinked low and high density polyethylenes. J Appl Polym Sci 100(4):3264–3271CrossRefGoogle Scholar
  8. 8.
    Chapiro A (1962) Radiation chemistry of polymeric systems (high polymers S.). Interscience Publishers, Wiley, New York, LondonGoogle Scholar
  9. 9.
    Dole M (1972) The radiation chemistry of macromolecules, vol 1. Academic Press, New York, LondonGoogle Scholar
  10. 10.
    Dole M (1973) The radiation chemistry of macromolecules, vol 2. Academic Press, New YorkGoogle Scholar
  11. 11.
    Mark EJ (1996) Physical properties of polymers handbook. American Institute of Physics, Woodbury, New YorkGoogle Scholar
  12. 12.
    Hedvig P (1977) Dielectric spectroscopy of polymers. Academia Kiado, BudapestGoogle Scholar
  13. 13.
    Mizutani T, Tsukahara T, Ieda M (1980) Effects of oxidation on the electrical conduction of polyethylene. J Phys D Appl Phys 13(9):1673–1679CrossRefGoogle Scholar
  14. 14.
    Ramanujam M, Wachtendorf V, Purohit PJ, Mix R, Schönhals A, Friedrich JF (2012) A detailed dielectric relaxation spectroscopy study of artificial UV weathered low density polyethylene. Thermochim Acta 530:73–78CrossRefGoogle Scholar
  15. 15.
    Suljovrujic E (2005) Some aspects of structural electrophysics of irradiated polyethylenes. Polymer 46(17):6353–6359CrossRefGoogle Scholar
  16. 16.
    Abdel Moez A, Aly SS, Elshaer YH (2012) Effect of gamma radiation on low density polyethylene (LDPE) films: optical, dielectric and FTIR studies. Spectrochim Acta A 93:203–207CrossRefGoogle Scholar
  17. 17.
    Chen G, Davies AE, Banford HM, Adachi N, Tanaka Y, Takada T (1999) Role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene. IEEE Conf Publ 4(467):75–78Google Scholar
  18. 18.
    Chen G, Fouracre RA, Banford HM, Tedford DJ (1991) The effects of gamma-irradiation on thermally stimulated discharge current spectra in low-density polyethylene. Radiat Phys Chem 37(3):523–530Google Scholar
  19. 19.
    de Haas MP, Hummel A (1989) Charge migration in irradiated polyethylene. IEEE Trans Dielectr Electr Insul 24(2):349–351CrossRefGoogle Scholar
  20. 20.
    Fleming RJ (1990) Charge trapping in organic polymers. Radiat Phys Chem 36(1):59–68Google Scholar
  21. 21.
    Fleming RJ, Balbachas DV (1988) Thermally stimulated processes in organic polymers. Thermochim Acta 134:15–25CrossRefGoogle Scholar
  22. 22.
    Fleming RJ, Balbachas DV (1990) Charge injection into cross linked polyethylene studied by thermally stimulated depolarization. Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report: 47–52Google Scholar
  23. 23.
    Kim K-Y, Ryu B-H, Byun D-J, Shin S-M (2001) Thermally stimulated current study in γ-ray irradiated low density polyethylene. Eur Polym J 37(5):1061–1064CrossRefGoogle Scholar
  24. 24.
    Laredo E, Suarez N, Bello A, De Gascue BR, Gomez MA, Fatou JMG (1999) α, β and γ relaxations of functionalized HD polyethylenes: a TSDC and a mechanical study. Polymer 40(23):6405–6416CrossRefGoogle Scholar
  25. 25.
    Montanari GC, Mazzanti G, Palmieri F, Motori A, Perego G, Serra S (2001) Space-charge trapping and conduction in LDPE, HDPE and XLPE. J Phys D Appl Phys 34(18):2902–2911CrossRefGoogle Scholar
  26. 26.
    Montanari GC, Morshuis PHF (2005) Space charge phenomenology in polymeric insulating materials. IEEE Trans Dielectr Electr Insul 12(4):754–767CrossRefGoogle Scholar
  27. 27.
    Neagu RM, Neagu ER, Kalogeras IM, Vassilikou-Dova A (2001) Evaluation of the dielectric parameters from TSDC spectra: application to polymeric systems. Mater Res Innov 4(2–3):115–125CrossRefGoogle Scholar
  28. 28.
    Tamayo I, Belana J, Mudarra M, Diego JA, Sellarès J (2003) Thermally stimulated depolarization currents of crosslinked polyethylene relaxations in the fusion range of temperatures. J Polym Sci Pol Phys 41(12):1412–1421CrossRefGoogle Scholar
  29. 29.
    Tamayo I, Belana J, Diego JA, Cañadas JC, Mudarra M, Sellarès J (2004) Space charge studies of crosslinked polyethylene midvoltage cable insulation by thermally stimulated depolarization current, infrared/fourier transform infrared, and scanning electron microscopy. J Polym Sci Pol Phys 42(22):4164–4174CrossRefGoogle Scholar
  30. 30.
    Kostoski D, Dojcilovic J, Novakovic L, Suljovrujic E (2006) Effects of charge trapping in gamma irradiated and accelerated aged low-density polyethylene. Polym Degrad Stab 91(9):2229–2232CrossRefGoogle Scholar
  31. 31.
    Kostoski D, Galovic S, Suljovrujic E (2004) Charge trapping and dielectric relaxations of gamma irradiated radiolytically oxidized highly oriented LDPE. Radiat Phys Chem 69(3):245–248CrossRefGoogle Scholar
  32. 32.
    Suljovrujic E, Kostoski D, Dojcilovic J (2001) Charge trapping in gamma irradiated low-density polyethylene. Polym Degrad Stab 74(1):167–170CrossRefGoogle Scholar
  33. 33.
    Sarathi R, Nandini A, Tanaka T (2011) Understanding treeing phenomena and space charge effect in gamma-irradiated XLPE cable insulation. Electr Eng 93(4):199–207CrossRefGoogle Scholar
  34. 34.
    Dudić D, Škipina B, Dojčilović J, Novaković L, Kostoski D (2011) Effects of charge trapping on the electrical conductivity of low-density polyethylene–carbon black composites. J Appl Polym Sci 121(1):138–143CrossRefGoogle Scholar
  35. 35.
    Kim C, Jin Z, Jiang P, Zhu Z, Wang G (2006) Investigation of dielectric behavior of thermally aged XLPE cable in the high-frequency range. Polym Test 25(4):553–561CrossRefGoogle Scholar
  36. 36.
    Lacoste J, Vaillant D, Carlsson DJ (1993) Gamma-, photo-, and thermally-initiated oxidation of isotactic polypropylene. J Polym Sci Polym Chem 31(3):715–722CrossRefGoogle Scholar
  37. 37.
    Murray KA, Kennedy JE, McEvoy B, Vrain O, Ryan D, Cowman R, Higginbotham CL (2013) The effects of high energy electron beam irradiation in air on accelerated aging and on the structure property relationships of low density polyethylene. Nucl Instrum Methods B 297:64–74CrossRefGoogle Scholar
  38. 38.
    Rivaton A, Lalande D, Gardette J-L (2004) Influence of the structure on the γ-irradiation of polypropylene and on the post-irradiation effects. Nucl Instrum Methods B 222:187–200CrossRefGoogle Scholar
  39. 39.
    Suljovrujic E (2013) Post-irradiation effects in polyethylenes irradiated under various atmospheres. Radiat Phys Chem 89:43–50CrossRefGoogle Scholar
  40. 40.
    Tidjani A, Watanabe Y (1996) Study of the effect of γ-dose rate on the oxidation of polypropylene. J Appl Polym Sci 60(11):1839–1845CrossRefGoogle Scholar
  41. 41.
    Perez CJ, Failla MD, Carella JM (2012) Advantageous use of SSA technique to observe effects of thickness, antioxidant and oxygen in gamma irradiated low density polyethylene. Thermochim Acta 538:67–74CrossRefGoogle Scholar
  42. 42.
    Shinde A, Salovey R (1985) Irradiation of ultrahigh-molecular-weight polyethylene. J Polym Sci Polym Phys 23(8):1681–1689CrossRefGoogle Scholar
  43. 43.
    Suljovrujic E (2009) Gel production, oxidative degradation and dielectric properties of isotactic polypropylene irradiated under various atmospheres. Polym Degrad Stabil 94(4):521–526CrossRefGoogle Scholar
  44. 44.
    Draganic IG, Draganic ZD (1971) The radiation chemistry of water. Academic Press, New YorkGoogle Scholar
  45. 45.
    Kacarevic-Popovic Z, Kostoski D, Novakovic L, Miljevic N, Secerov B (2004) Influence of the irradiation conditions on the effect of radiation on polyethylene. J Serb Chem Soc 69(12):1029–1041CrossRefGoogle Scholar
  46. 46.
    Ashcraft CR, Boyd RH (1976) A dielectric study of molecular relaxation in oxidized and chlorinated polyethylenes. J Polym Sci Polym Phys 14(12):2153–2193CrossRefGoogle Scholar
  47. 47.
    Boyd RH (1985) Relaxation processes in crystalline polymers: molecular interpretation—a review. Polymer 26(8):1123–1133CrossRefGoogle Scholar
  48. 48.
    Mansfield M, Boyd RH (1978) Molecular motions, the α relaxation, and chain transport in polyethylene crystals. J Polym Sci Polym Phys 16(7):1227–1252CrossRefGoogle Scholar
  49. 49.
    Nitta K-H, Tanaka A (2001) Dynamic mechanical properties of metallocene catalyzed linear polyethylenes. Polymer 42(3):1219–1226CrossRefGoogle Scholar
  50. 50.
    Popli R, Glotin M, Mandelkern L, Benson RS (1984) Dynamic mechanical studies of α and β relaxations of polyethylenes. J Polym Sci Polym Phys 22(3):407–448CrossRefGoogle Scholar
  51. 51.
    Puig CC, Albano C, Laredo E, Quero E, Karam A (2010) Thermal characterization of the HDPE/LDPE blend (10/90) irradiated using γ-rays. Nucl Instrum Methods B 268(9):1466–1473CrossRefGoogle Scholar
  52. 52.
    Stamboliev G, Suljovrujic E (2010) A dielectric study of molecular relaxations in irradiated high density polyethylene. Polym Degrad Stabil 95(4):593–599CrossRefGoogle Scholar
  53. 53.
    Perepechko II (1981) An introduction to polymer physics. Mir Publishers, MoscowGoogle Scholar
  54. 54.
    Boyd RH, Breitling SM (1974) The conformational analysis of crankshaft motions in polyethylene. Macromolecules 7(6):855–862CrossRefGoogle Scholar
  55. 55.
    Matsuo M, Bin Y, Xu C, Ma L, Nakaoki T, Suzuki T (2003) Relaxation mechanism in several kinds of polyethylene estimated by dynamic mechanical measurements, positron annihilation, X-ray and 13C solid-state NMR. Polymer 44(15):4325–4340CrossRefGoogle Scholar
  56. 56.
    Khanna YP, Turi EA, Taylor TJ, Vickroy VV, Abbott RF (1985) Dynamic mechanical relaxations in polyethylene. Macromolecules 18(6):1302–1309CrossRefGoogle Scholar
  57. 57.
    Corrales T, Villavieja MM, Peinado C, Bosch P (2006) β- and γ-relaxations of low density polyethylene: study by fluorescent probes. J Photochem Photobiol A 182(1):52–59CrossRefGoogle Scholar
  58. 58.
    Popli R, Mandelkern L (1983) The transition in ethylene copolymers: the β-transition. Polym Bull 9(6–7):260–267Google Scholar
  59. 59.
    Boyd RH (1984) Strengths of the mechanical α-, β-, and γ-relaxation processes in linear polyethylene. Macromolecules 17(4):903–911CrossRefGoogle Scholar
  60. 60.
    Boyd RH (1985) Relaxation processes in crystalline polymers: experimental behavior—a review. Polymer 26(3):323–347CrossRefGoogle Scholar
  61. 61.
    Boyer RF (1973) Glass temperatures of polyethylene. Macromolecules 6(2):288–299CrossRefGoogle Scholar
  62. 62.
    Yamamoto K, Kato K, Sugino Y, Hara S, Miwa Y, Sakaguchi M, Shimada S (2005) ESR study on segmental motion of polyethylene in amorphous region, dependent on crystallinity, molecular weight, and labeled site. Macromolecules 38(11):4737–4743CrossRefGoogle Scholar
  63. 63.
    Frubing P, Blischke D, Gerhard-Multhaupt R, Salah Khalil M (2001) Complete relaxation map of polyethylene: filler-induced chemical modifications as dielectric probes. J Phys D Appl Phys 34(20):3051–3057CrossRefGoogle Scholar
  64. 64.
    Axelson DE, Mandelkern L (1978) An upper limit to the glass temperature of linear polyethylene as determined by high-field carbon-13 Fourier transform nuclear magnetic resonance. J Polym Sci Polym Phys 16(6):1135–1138CrossRefGoogle Scholar
  65. 65.
    Dechter JJ, Axelson DE, Dekmezian A, Glotin M, Mandelkern L (1982) An analysis of the β transition of linear and branched polyethylenes by carbon-13 NMR. J Polym Sci Polym Phys 20(4):641–650CrossRefGoogle Scholar
  66. 66.
    Boiko YM, Kuznetsova IG, Unezheva SA, Kovriga VV, Gann LA (1993) Strain–strength and relaxation properties of polyethylene reinforced by orientational drawing. Mech Compos Mater 29(1):1–6CrossRefGoogle Scholar
  67. 67.
    Matthews RG, Unwin AP, Ward IM, Capaccio G (1999) A comparison of the dynamic mechanical relaxation behavior of linear low- and high-density polyethylenes. J Macromol Sci B 38(1–2):123–143CrossRefGoogle Scholar
  68. 68.
    Pegoretti A, Ashkar M, Migliaresi C, Marom G (2000) Relaxation processes in polyethylene fibre-reinforced polyethylene composites. Compos Sci Technol 60(8):1181–1189CrossRefGoogle Scholar
  69. 69.
    Qin Q, McKenna GB (2006) Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids. J Non Cryst Solids 352(28–29):2977–2985CrossRefGoogle Scholar
  70. 70.
    Suljovrujic E (2002) Dielectric studies of molecular β-relaxation in low density polyethylene: the influence of drawing and ionizing radiation. Polymer 43(22):5969–5978CrossRefGoogle Scholar
  71. 71.
    Suljovrujic E (2005) Some aspects of structural electrophysics of irradiated oriented LLDPE. Nucl Instrum Methods B 236(1–4):399–406Google Scholar
  72. 72.
    Graff MS, Boyd RH (1994) A dielectric study of molecular relaxation in linear polyethylene. Polymer 35(9):1797–1801CrossRefGoogle Scholar
  73. 73.
    Puertolas JA, Martínez-Morlanes MJ, Mariscal MD, Medel FJ (2011) Thermal and dynamic mechanical properties of vitamin e infused and blended ultra-high molecular weight polyethylenes. J Appl Polym Sci 120(4):2282–2291CrossRefGoogle Scholar
  74. 74.
    Ratner S, Pegoretti A, Migliaresi C, Weinberg A, Marom G (2005) Relaxation processes and fatigue behavior of crosslinked UHMWPE fiber compacts. Compos Sci Technol 65(1):87–94CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Georgi Stamboliev
    • 1
  • Dejan Milicevic
    • 2
  • Maja Micic
    • 2
  • Edin Suljovrujic
    • 2
    Email author
  1. 1.Valve TechnologyPerthAustralia
  2. 2.Vinca Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations