Polymer Bulletin

, Volume 70, Issue 2, pp 593–601 | Cite as

Block copolymer photonic mesogels exhibiting dual volume phase transitions

  • Yulim Jang
  • Jeyon Chung
  • Sungmin Lee
  • Hyunmin Lim
  • Heeyoel Baek
  • Youngjong Kang
Original Paper


Photonic mesogel films exhibiting brilliant photonic colors were prepared by selective swelling of polystyrene-b-quaternized poly(2-vinyl pyridine) (PS-b-QP2VP) block copolymers, and their volume phase transition behaviors were investigated in various solvent mixtures. The swollen PS-b-QP2VP lamellae segregate into mesophased gels where the highly swollen QP2VP gel layers are alternating with the glassy PS layers and exhibit strong responsive photonic colors in visible regime. Utilizing the changes of photonic stop bands, the swelling behaviors of the photonic mesogels were able to be monitored with sub-nanometer accuracy. Unusual dual volume phase transitions were observed at certain conditions where hydrogen bonding became significantly strong.


Photonic crystal Mesogel Volume phase transitions 



This research was supported by the International Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) of Korea (Grant number: K2010-00295, FY 2010), and the Industrial Strategic technology development program, 10041221, Core Technology of Materials funded by the Ministry of Knowledge Economy (MKE, Korea).


  1. 1.
    Hamley I (1998) The physics of block copolymers. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Lazzari M, Liu G, Lecommandoux S (eds) (2006) Block copolymers in nanoscience. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Klok HA, Lecommandoux S (2001) Supramolecular materials via block copolymer self-assembly. Adv Mater 13(16):1217–1229CrossRefGoogle Scholar
  4. 4.
    Yoo SI, Sohn B-H, Zin W-C, An S-J, Yi G-C (2004) Self-assembled arrays of zinc oxide nanoparticles from monolayer films of diblock copolymer micelles. Chem Commun 24:2850–2851CrossRefGoogle Scholar
  5. 5.
    Grumelard J, Taubert A, Meier W (2004) Soft nanotubes from amphiphilic ABA triblock macromonomers. Chem Commun 13:1462–1463CrossRefGoogle Scholar
  6. 6.
    Black CT (2007) Block copolymers: nanowire arrays build themselves. Nat Nanotechnol 2(8):464–465CrossRefGoogle Scholar
  7. 7.
    Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 386(6621):143CrossRefGoogle Scholar
  8. 8.
    Urbas A, Sharp R, Fink Y, Thomas EL, Xenidou M, Fetters LJ (2000) Tunable block copolymer/homopolymer photonic crystals. Adv Mater 12(11):812–814CrossRefGoogle Scholar
  9. 9.
    Urbas AM, Maldovan M, DeRege P, Thomas EL (2002) Bicontinuous cubic block copolymer photonic crystals. Adv Mater 14(24):1850–1853CrossRefGoogle Scholar
  10. 10.
    Deng T, Chen C, Honeker C, Thomas EL (2003) Two-dimensional block copolymer photonic crystals. Polymer 44(21):6549–6553CrossRefGoogle Scholar
  11. 11.
    Kang Y, Walish JJ, Gorishnyy T, Thomas EL (2007) Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat Mater 6(12):957–960CrossRefGoogle Scholar
  12. 12.
    Kang C, Kim E, Baek H, Hwang K, Kwak D, Kang Y, Thomas E (2009) Full color stop bands in hybrid organic/inorganic block copolymer photonic gels by swelling-freezing. J Am Chem Soc 131(22):7538–7539CrossRefGoogle Scholar
  13. 13.
    Walish JJ, Kang Y, Mickiewicz RA, Thomas EL (2009) Bioinspired electrochemically tunable block copolymer full color pixels. Adv Mater 21(30):3078–3081CrossRefGoogle Scholar
  14. 14.
    Kim E, Kang C, Baek H, Hwang K, Kwak D, Lee E, Kang Y, Thomas E (2010) Control of optical hysteresis in block copolymer photonic gels: a step towards wet photonic memory films. Adv Funct Mater 20(11):1728–1732CrossRefGoogle Scholar
  15. 15.
    Hwang K, Kwak D, Kang C, Kim D, Ahn Y, Kang Y (2011) Electrically tunable hysteretic photonic gels for nonvolatile display pixels. Angew Chem Int Ed 50(28):6311–6314CrossRefGoogle Scholar
  16. 16.
    Zhulina E (1993) Charged block copolymer mesogels. Macromolecules 26(23):6273–6283CrossRefGoogle Scholar
  17. 17.
    Eicke HF, Gauthier M, Hammerich H (1993) A conductometric analysis of mesogel formation by ABA block copolymers in w/o microemulsions. J Phys II 3(2):255–258CrossRefGoogle Scholar
  18. 18.
    Arnold ME, Nagai K, Spontak RJ, Freeman BD, Leroux D, Betts DE, DeSimone JM, DiGiano FA, Stebbins CK, Linton RW (2002) Microphase-separated block copolymers comprising low surface energy fluorinated blocks and hydrophilic blocks: synthesis and characterization. Macromolecules 35(9):3697–3707CrossRefGoogle Scholar
  19. 19.
    King MR, White SA, Smith SD, Spontak RJ (1999) Mesogel networks via selective midblock swelling of lamellar triblock copolymers. Langmuir 15(23):7886–7889CrossRefGoogle Scholar
  20. 20.
    Halperin A, Zhulina E (1991) Mesogels. Europhys Lett 16:337CrossRefGoogle Scholar
  21. 21.
    Zhulina E, Halperin A (1992) Lamellar mesogels and mesophases: a self-consistent-field theory. Macromolecules 25(21):5730–5741CrossRefGoogle Scholar
  22. 22.
    Pendry JB, MacKinnon A (1992) Calculation of photon dispersion relations. Phys Rev Lett 69(19):2772–2775CrossRefGoogle Scholar
  23. 23.
    Kang Y (2012) Colorimetric humidity sensors based on block copolymer photonic gels. Macromol Res 20:1223–1225CrossRefGoogle Scholar
  24. 24.
    Tanaka T, Fillmore D, Sun S-T, Nishio I, Swislow G, Shah A (1980) Phase transitions in ionic gels. Phys Rev Lett 45(20):1636–1639CrossRefGoogle Scholar
  25. 25.
    Tanaka T (1981) Gels. Sci Am 244(1):124–138CrossRefGoogle Scholar
  26. 26.
    Flory PJ (1950) Statistical mechanics of swelling of network structures. J Chem Phys 18:108–111CrossRefGoogle Scholar
  27. 27.
    Kawaguchi D, Satoh M (1999) Swelling behavior of partially quaternized poly(4-vinylpyridine) gels in water/organic solvent mixtures. Macromolecules 32(23):7828–7835CrossRefGoogle Scholar
  28. 28.
    Yasumoto N, Kasahara N, Sakaki A, Satoh M (2006) Ion-specific swelling behaviors of partially quaternized poly(4-vinyl pyridine) gel. Colloid Polym Sci 284(8):900–908CrossRefGoogle Scholar
  29. 29.
    Biesalski M, Johannsmann D, Rühe J (2004) Electrolyte-induced collapse of a polyelectrolyte brush. J Chem Phys 120:8807CrossRefGoogle Scholar
  30. 30.
    Beer M, Schmidt M, Muthukumar M (1997) The electrostatic expansion of linear polyelectrolytes: effects of gegenions, co-ions, and hydrophobicity. Macromolecules 30(26):8375–8385CrossRefGoogle Scholar
  31. 31.
    Fuoss RM, Strauss UP (1948) Polyelectrolytes. II. Poly-4-vinylpyridonium chloride and poly-4-vinyl-N-n-butylpyridonium bromide. J Polym Sci 3(2):246–263CrossRefGoogle Scholar
  32. 32.
    Strauss UP, Gershfeld NL, Spiera H (1954) Charge reversal of cationic poly-4-vinylpyridine derivatives in KBr Solutions. J Am Chem Soc 76(23):5909–5911CrossRefGoogle Scholar
  33. 33.
    Annaka M, Tanaka T (1992) Multiple phases of polymer gels. Nature 355:430–432CrossRefGoogle Scholar
  34. 34.
    Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. In: Dusek K (ed) Responsive gels: volume transitions I. Springer, Heidelberg, pp 1–62CrossRefGoogle Scholar
  35. 35.
    Xia H, Zhao J, Meng C, Wu Y, Lu Y, Wang J, Song Y, Jiang L, Zhang G (2011) Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization. Soft Matter 7(9):4156–4159CrossRefGoogle Scholar
  36. 36.
    Hofmeister F (1888) Zur Lehre von der Wirkung der Salze II. Arch Exp Pathol Pharmakol 24:247–260CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yulim Jang
    • 1
  • Jeyon Chung
    • 1
  • Sungmin Lee
    • 1
  • Hyunmin Lim
    • 1
  • Heeyoel Baek
    • 1
  • Youngjong Kang
    • 1
  1. 1.Department of Chemistry, Research Institute for Natural Sciences, and Institute of Nano Science and TechnologyHanyang UniversitySeoulSouth Korea

Personalised recommendations