Advertisement

Polymer Bulletin

, Volume 70, Issue 1, pp 47–57 | Cite as

Synthesis of a new poly(dinaphthylacetylene) and evaluation of its solution conformation

  • Yuki Arakawa
  • Hidemine Furuya
  • Gen-ichi KonishiEmail author
Original Paper
  • 396 Downloads

Abstract

We report the synthesis of various substituted polyacetylenes including a novel poly(dinaphthylacetylene), poly{2-(2-ethylhexyloxy)-6-[2-(6-methoxynaphthyl-2-yl)ethynyl]naphthalene}, by the use of a WCl6–Ph4Sn catalyst system, and systematically investigate their solution properties. It is found that poly(diarylacetylene)s such as poly(dinaphthylacetylene)s and poly(diphenylacetylene)s exhibit a solution morphology between rod-like and semi-flexible, whereas the less bulky poly(phenylacetylene)s, poly(silylacetylene)s, and poly(tert-butylacetylene) exhibit a random coil morphology.

Keywords

Polyacetylene Solution property Mark–Houwink–Sakurada plot Metathesis polymerization Transition metal catalyst 

Notes

Acknowledgments

We thank Dr. Masashi Shiotsuki (Kyoto University) for helpful discussion of polymer synthesis. This study was mainly supported by the Industrial Technology Research and Development Grant (09C46622a) from NEDO of JAPAN.

Supplementary material

289_2012_819_MOESM1_ESM.doc (580 kb)
Supplementary material 1 (DOC 580 kb)

References

  1. 1.
    Masuda T, Higashimura T (1984) Synthesis of high polymers from substituted acetylenes: exploitation of molybdenum- and tungsten-based catalysts. Acc Chem Res 17:51CrossRefGoogle Scholar
  2. 2.
    Shiotsuki M, Saeed I, Zhangl W, Masuda T (2007) Development of new living polymerization systems for substituted polyacetylenes-design of catalysts and synthesis of well-defined polymers. Kobunshi Ronbunshu 64:643CrossRefGoogle Scholar
  3. 3.
    Shiotsuki M, Sanda F, Masuda T (2011) Polymerization of substituted acetylenes and features of the formed polymers. Polym Chem 2:1044CrossRefGoogle Scholar
  4. 4.
    Aoki T, Kokai M, Shinohara K, Oikawa E (1993) Chiral herical conformation of the polyphenylacetylene having optically-active bulky substituent. Chem Lett 12:2009CrossRefGoogle Scholar
  5. 5.
    Aoki T, Kaneko T, Maruyama N, Sumi A, Takahashi M, Sato T, Teraguchi M (2003) Helix-sense-selective polymerization of phenylacetylene having two hydroxy groups using a chiral catalytic system. J Am Chem Soc 125:6346CrossRefGoogle Scholar
  6. 6.
    Aoki T, Kaneko T, Teraguchi M (2006) Synthesis of functional pi-conjugated polymers from aromatic acetylenes. Polymer 47:4867CrossRefGoogle Scholar
  7. 7.
    Liu LJ, Zang Y, Hadano S, Aoki T, Teraguchi M, Kaneko T, Namikoshi T (2010) New achiral phenylacetylene monomers having an oligosiloxanyl group most suitable for helix-sense-selective polymerization and for obtaining good optical resolution membrane materials. Macromolecules 43:9268CrossRefGoogle Scholar
  8. 8.
    Kevin KL, Cheuk WY, Lam J, Li BS, Xie Y, Ben ZT (2007) Decorating conjugated polymer chains with naturally occurring molecules: synthesis, solvatochromism, chain helicity, and biological activity of sugar-containing poly(phenylacetylene)s. Macromolecules 40:2633CrossRefGoogle Scholar
  9. 9.
    Gruber AS, Boiteux G, De Souza RF, De Souza MO (2002) Synthesis of semiconducting polyphenylacetylene catalyzed by Ni(MeCN)6(BF4)2/AlEt2Cl. Polym Bull 47:529CrossRefGoogle Scholar
  10. 10.
    Holob GM, Ehrlich P, Allendoerferl RD (1972) Electron spin resonance in crystallizable, high molecular weight polyphenylacetylene. Macromolecules 5:569CrossRefGoogle Scholar
  11. 11.
    Nishide H, Kaneko T, Igarashi M, Tsuchida E, Yoshioka N, Lahti PM (1994) Magnetic characterization and computational modeling of poly(phenylacety1ene)s bearing stable radical groups. Macromolecules 27:3082CrossRefGoogle Scholar
  12. 12.
    Alexander WC, Feast J, Friend RH, Sutcliffe LH (1992) Electron paramagnetic resonance and magnetic susceptibility studies of new substituted poly(acety1ene) derivatives. J Mater Chem 2:459CrossRefGoogle Scholar
  13. 13.
    Toy LG, Nagai K, Freeman BD, Pinnau I, He Z, Masuda T, Teraguchi M, Yampolskii YP (2000) Pure-gas and vapor permeation and sorption properties of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA). Macromolecules 33:2516CrossRefGoogle Scholar
  14. 14.
    Abe Y, Kouzai H, Mizumoto T, Masuda T, Higashimura T (1994) Polymerization of (o-alkylphenyl)acetylenes and polymer properties. Polym J 26:207CrossRefGoogle Scholar
  15. 15.
    Kawakami Y, Karasawa H, Aoki T, Yamamura Y, Hisada H, Yamashita Y (1985) Polymer with oligoorganosiloxane side chains as materials for oxygen permeable membranes. Polym J 17:1159CrossRefGoogle Scholar
  16. 16.
    Aoki T, Kaneko T (2005) New macromolecular architectures for permselective membranes—gas permselective membranes from dendrimers and enantioselectively permeable membranes from one-handed helical polymers. Polym J 37:717CrossRefGoogle Scholar
  17. 17.
    Yoshino K, Hayashi S, Inuishi Y, Hattori K, Watanabe Y (1983) Photoluminescence of cis- and trans-polyacetylene. Solid State Commun 46:583CrossRefGoogle Scholar
  18. 18.
    Sun R, Zheng Q, Zhang X, Masuda T, Kobayashi T (1999) Light-emitting substituted polyacetylenes. Jpn J Appl Phys 38:2017CrossRefGoogle Scholar
  19. 19.
    Hidayat R, Fujii A, Ozaki M, Teraguchi M, Masuda T, Yoshino K (2001) Exciton dynamics in disubstituted polyacetylenes. Synth Met 119:597CrossRefGoogle Scholar
  20. 20.
    Kishimoto Y, Eckerle P, Miyatake T, Ikariya T, Noyori R (1994) Living polymerization of phenylacetylenes initiated by Rh(C≡CC6H5)(2,5-norbornadiene)[P(C6H5)3]2. J Am Chem Soc 116:12131CrossRefGoogle Scholar
  21. 21.
    Kishimoto Y, Itou M, Miyatake T, Ikariya T, Noyori R (1995) Polymerization of monosubstituted acetylenes with a zwitterionic rhodium(I) complex, Rh(2,5-norbornadiene)[η6-C6H5)B-(C6H5)3]. Macromolecules 28:6662CrossRefGoogle Scholar
  22. 22.
    Masuda T, Sasaki N, Higashimura T (1975) Polymerization of phenylacetylenes. III. Structure and properties of poly(phenylacetylene)s obtained by tungsten hexachloride or molybdenum pentachloride. Macromolecules 8:717CrossRefGoogle Scholar
  23. 23.
    Fujita Y, Misumi Y, Tabata M, Masuda T (1998) Synthesis, geometric structure, and properties of poly(phenylacetylenes) with bulky para-substituents. J Polym Sci, Part A: Polym Chem 36:3157CrossRefGoogle Scholar
  24. 24.
    Kwak G, Minakuchi M, Sakaguchi T, Masuda T, Fujiki M (2007) Poly(diphenylacetylene) bearing long alkyl side chain via silylene linkage: its lyotropic liquid crystallinity and optical anisotropy. Chem Mater 19:3654CrossRefGoogle Scholar
  25. 25.
    Kwak G, Minakuchi M, Sakaguchi T, Masuda T, Fujiki M (2008) Alkyl side-chain length effects on fluorescence dynamics, lamellar layer structures, and optical anisotropy of poly(diphenylacetylene) derivatives. Macromolecules 41:2743CrossRefGoogle Scholar
  26. 26.
    Masuda T, Okano Y, Kuwane Y, Higashimura T (1980) Polymerization of t-butylacetylene catalyzed by molybdenum pentachloride and tungsten hexachloride. Polym J 12:907CrossRefGoogle Scholar
  27. 27.
    Muramatsu H, Ueda T, Ito K (1985) Polymerization of some fluorine-containing phenylacetylenes. Macromolecules 18:1634Google Scholar
  28. 28.
    Kouzai H, Masuda T, Higashimura T (1994) Synthesis and properties of poly(diphenylacetylenes) having aliphatic para-substituents. J Polym Sci, Part A: Polym Chem 32:2523–2175425CrossRefGoogle Scholar
  29. 29.
    Fukushima T, Tsuchihara K (2009) Syntheses and chirality control of optically active poly(diphenylacetylene) derivatives. Macromolecules 42:5453CrossRefGoogle Scholar
  30. 30.
    Takata T, Ishiwari F, Sato T, Seto R, Koyama Y (2008) Synthesis, structure, and properties of polyacetylenes possessing chiral spirobifluorene moieties in the side chain. Polym J 40:846CrossRefGoogle Scholar
  31. 31.
    Okano Y, Masuda T, Higashimura T (1984) Polymerization of trimethylsilylacetylene by WCl6 based catalysts. J Polym Sci, Part A: Polym Chem 22:1603Google Scholar
  32. 32.
    Tajima H, Masuda T, Higashimura T (1987) Polymerization of silylacetylenes by W and Mo catalysts. J Polym Sci, Part A: Polym Chem 25:2033CrossRefGoogle Scholar
  33. 33.
    Gal YS, Choi SK (1989) Polymerization of 1-aryl-2-trimethylsilylacetylenes by transition metal catalysts(II). J Polym Sci, Part A: Polym Chem 27:3CrossRefGoogle Scholar
  34. 34.
    Kouzai H, Masuda T, Higashimura T (1994) Polymerization and polymer properties of diarylacetylenes. Polymer 35:4920CrossRefGoogle Scholar
  35. 35.
    Sakurada I (2012) Shape of threadlike molecules in solution, and relationship between solution viscosity and molecular weight. Polym J 44:5CrossRefGoogle Scholar
  36. 36.
    Nemoto T, Ueno T, Nishi M, Shin DM, Nakamoto Y, Konishi G (2006) Synthesis and properties of organosoluble poly(phenylenemethylene)s from substituted benzenes or naphthalenes. Polym J 38:1278CrossRefGoogle Scholar
  37. 37.
    Nemoto T, Amir I, Konishi G (2009) Synthesis and properties of a high-molecular-weight organosoluble bisphenol a novolac. Polym J 41:338CrossRefGoogle Scholar
  38. 38.
    Konishi G, Nojiri Y, Matuo T, Nemoto T, Asai K, Sumi K, Nakamoto Y (2010) Synthesis and evalution of well-defined high molecular weight diphenyl oxide and diphenyl sulfide novolacs. J Appl Polym Sci 118:1651Google Scholar
  39. 39.
    Miura Y, Okada M (2006) Synthesis of graft copolymer by ATRP of MMA from poly(phenylacetylene). J Polym Sci PartA Polym Chem 44:6697CrossRefGoogle Scholar
  40. 40.
    Yoshimura T, Masuda T, Higashimura T, Okuhara K, Ueda T (1991) Polymerization of (pentafluorophenyl)acetylene and (p-butyl-o, o, m, m-tetrafluorophenyl)acetylene and polymer properties. Macromolecules 24:6053CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yuki Arakawa
    • 1
  • Hidemine Furuya
    • 1
  • Gen-ichi Konishi
    • 1
    Email author
  1. 1.Department of Organic and Polymeric MaterialsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations