Polymer Bulletin

, Volume 69, Issue 8, pp 899–910 | Cite as

Large-scale preparation of graphene sheets and their easy incorporation with other nanomaterials

Original Paper

Abstract

Graphene dispersions with concentrations up to 0.5 mg/mL were produced by dispersion in N,N-dimethylformamide with the aid of polyacrylic acid. Graphene oxide could also be dispersed with even higher concentration (17 mg/mL), and this advantage was used for the large-scale synthesis of graphene. The good dispersion of graphene sheets also facilitated the preparation of a new hybrid material of graphene and Fe3O4 nanoparticles, which exhibited interesting magnetic properties.

Graphical Abstract

Keywords

Graphene In situ polymerization Large-scale Nanomaterial Polyacylic acid 

Supplementary material

289_2012_803_MOESM1_ESM.pdf (3.7 mb)
Supplementary material 1 (PDF 3781 kb)

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  2. 2.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  3. 3.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRefGoogle Scholar
  4. 4.
    Zhang YB, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204CrossRefGoogle Scholar
  5. 5.
    Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R et al (2004) Ultrathin epitaxial graphite: two-dimensional electron gas properties and a route towards graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916CrossRefGoogle Scholar
  6. 6.
    Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang EG et al (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotech 3:538–542CrossRefGoogle Scholar
  7. 7.
    Wang Y, Huang Y, Song Y, Zhang XY, Ma YF, Liang JJ et al (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224CrossRefGoogle Scholar
  8. 8.
    Di CA, Wei DC, Yu G, Liu YQ, Guo YL, Zhu DB (2008) Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 20:3289–3293CrossRefGoogle Scholar
  9. 9.
    Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRefGoogle Scholar
  10. 10.
    Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotech 4:30–33CrossRefGoogle Scholar
  11. 11.
    Sutter PW, Flege JI, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406–411CrossRefGoogle Scholar
  12. 12.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotech 3:563–568CrossRefGoogle Scholar
  13. 13.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotech 3:101–105CrossRefGoogle Scholar
  14. 14.
    Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721CrossRefGoogle Scholar
  15. 15.
    Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRefGoogle Scholar
  16. 16.
    Bai H, Xu YX, Zhao L, Li C, Shi GQ (2009) Non-convalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669CrossRefGoogle Scholar
  17. 17.
    Si YC, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRefGoogle Scholar
  18. 18.
    Veca LM, Lu F, Meziani MJ, Cao L, Zhang PY, Sun YP et al (2009) Polymer functionalization and solubilization of carbon nanosheets. Chem Commun 18:2565–2567CrossRefGoogle Scholar
  19. 19.
    Tang BZ, Xu HY (1999) Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 32:2569–2576CrossRefGoogle Scholar
  20. 20.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphite oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  21. 21.
    Shen J, Hu Y, Li C, Qin C, Shi M, Ye MX (2009) Layer-by-layer self-assembly of graphene nanoplatelets. Langmuir 25:6122–6128CrossRefGoogle Scholar
  22. 22.
    Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857CrossRefGoogle Scholar
  23. 23.
    Zhang XL, Zhao X, Liu ZB, Liu YS, Chen YS, Tian JG (2009) Enhanced nonlinear optical properties of graphene–oligothiophene hybrid material. Opt Express 17(26):23959–23964CrossRefGoogle Scholar
  24. 24.
    Liu Z, Xu YF, Zhang XY, Zhang XL, Chen YS, Tian JG (2009) Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B 113:9681–9686CrossRefGoogle Scholar
  25. 25.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nature Nanotech 4:217–224CrossRefGoogle Scholar
  26. 26.
    Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nature Nanotech 4:25–29CrossRefGoogle Scholar
  27. 27.
    Kosynkin DV, Higginbotham AL, Sinitskii A, Dimiev A, Price BK, Tour JM et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876CrossRefGoogle Scholar
  28. 28.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRefGoogle Scholar
  29. 29.
    Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRefGoogle Scholar
  30. 30.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Nguyen ST, Ruoff RS et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  31. 31.
    Ramanathan T, Abdala AA, Stankovich S, Aksay IA, Prud’homme RK, Brinson LC et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotech 3:327–331CrossRefGoogle Scholar
  32. 32.
    Radovic LR, Bockrath B (2005) On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. J Am Chem Soc 127:5917–5927CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of ChemistryHubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan UniversityWuhanChina

Personalised recommendations