Polymer Bulletin

, Volume 69, Issue 8, pp 967–1006 | Cite as

Azobenzene photomechanics: prospects and potential applications

  • Zahid Mahimwalla
  • Kevin G. Yager
  • Jun-ichi Mamiya
  • Atsushi Shishido
  • Arri Priimagi
  • Christopher J. BarrettEmail author
Original Paper


The change in shape inducible in some photo-reversible molecules using light can effect powerful changes to a variety of properties of a host material. This class of reversible light-switchable molecules includes molecules that photo-dimerize, such as coumarins and anthracenes; those that allow intra-molecular photo-induced bond formation, such as fulgides, spiro-pyrans, and diarylethenes; and those that exhibit photo-isomerization, such as stilbenes, crowded alkenes, and azobenzenes. The most ubiquitous natural molecule for reversible shape change, however, and perhaps the inspiration for all artificial bio-mimics, is the rhodopsin/retinal protein system that enables vision, and this is the quintessential reversible photo-switch for performance and robustness. Here, the small retinal molecule embedded in a cage of rhodopsin helices isomerizes from a cis geometry to a trans geometry around a C=C double bond with the absorption of just a single photon. The modest shape change of just a few angstroms is quickly amplified and sets off a cascade of larger shape and chemical changes, eventually culminating in an electrical signal to the brain of a vision event, the energy of the input photon amplified many thousands of times in the process. Complicated biochemical pathways then revert the trans isomer back to cis, and set the system back up for another cascade upon subsequent absorption. The reversibility is complete, and many subsequent cycles are possible. The reversion mechanism back to the initial cis state is complex and enzymatic, hence direct application of the retinal/rhodopsin photo-switch to engineering systems is difficult. Perhaps the best artificial mimic of this strong photo-switching effect however in terms of reversibility, speed, and simplicity of incorporation, is azobenzene. Trans and cis states can be switched in microseconds with low-power light, reversibility of 105 and 106 cycles is routine before chemical fatigue, and a wide variety of molecular architectures is available to the synthetic materials chemist, permitting facile anchoring and compatibility, as well as chemical and physical amplification of the simple geometric change. This review article focuses on photo-mechanical effect taking place in various material systems incorporating azobenzene. The photo-mechanical effect can be defined as reversible change in shape by absorption of light, which results in a significant macroscopic mechanical deformation, and reversible mechanical actuation, of the host material. Thus, we exclude simple thermal expansion effects, reversible but non-mechanical photo-switching or photo-chemistry, as well as the wide range of optical and electro-optical switching effects for which good reviews exist elsewhere. Azobenzene-based material systems are also of great interest for light energy harvesting applications across much of the solar spectrum, yet this emerging field is still in an early enough stage of research output as to not yet warrant review, but we hope that some of the ideas put forward here toward promising future directions of research, will help guide the field.


Azobenzene Photomechanics Thin films Light harvesting Liquid crystals Photochemistry 



The authors are grateful for funding from NSERC Canada, JSPS Japan, and a McGill-RIKEN Canada–Japan collaborative exchange grant. K.G.Y. is supported by the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is operated by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.


  1. 1.
    Delaire JA, Nakatani K (2000) Linear and nonlinear optical properties of photochromic molecules and materials. Chem Rev 100(5):1817–1846CrossRefGoogle Scholar
  2. 2.
    Yesodha SK, Sadashiva Pillai CK, Tsutsumi N (2004) Stable polymeric materials for nonlinear optics: a review based on azobenzene systems. Prog Polym Sci 29(1):45–74CrossRefGoogle Scholar
  3. 3.
    Aoki Ki, Nakagawa M, Ichimura K (2000) Self-assembly of amphoteric azopyridine carboxylic acids: organized structures and macroscopic organized morphology influenced by heat, ph change, and light. J Am Chem Soc 122(44):10997–11004CrossRefGoogle Scholar
  4. 4.
    Kadota S, Aoki K, Nagano S, Seki T (2005) Photocontrolled microphase separation of block copolymers in two dimensions. J Am Chem Soc 127(23):8266–8267CrossRefGoogle Scholar
  5. 5.
    Effing JJ, Kwak JCT (1995) Photoswitchable phase separation in hydrophobically modified polyacrylamide/surfactant systems. Angew Chem Int Ed 34(1):88–90CrossRefGoogle Scholar
  6. 6.
    Yamamoto H, Nishida A, Takimoto T, Nagai A (1990) Photoresponsive peptide and polypeptide systems. VIII. Synthesis and reversible photochromism of azo aromatic poly(l-ornithine). J Polym Sci Part A Pol Chem 28(1):67–74CrossRefGoogle Scholar
  7. 7.
    Arai K, Kawabata Y (1995) Changes in the sol-gel transformation behavior of azobenzene moiety-containing methyl cellulose irradiated with UV light. Macromol Rapid Commun 16(12):875–880CrossRefGoogle Scholar
  8. 8.
    Ebralidze TD, Mumladze AN (1990) Light-induced anisotropy in azo-dye-colored materials. Appl Opt 29(4):446–447CrossRefGoogle Scholar
  9. 9.
    Higuchi M, Minoura N, Kinoshita T (1994) Photocontrol of micellar structure of an azobenzene containing amphiphilic sequential polypeptide. Chem Lett 2:227–230CrossRefGoogle Scholar
  10. 10.
    Higuchi M, Minoura N, Kinoshita T (1995) Photoinduced structural and functional changes of an azobenzene containing amphiphilic sequential polypeptide. Macromolecules 28(14):4981–4985CrossRefGoogle Scholar
  11. 11.
    Steinem C, Janshoff A, Vollmer MS, Ghadiri MR (1999) Reversible photoisomerization of self-organized cylindrical peptide assemblies at air-water and solid interfaces. Langmuir 15(11):3956–3964CrossRefGoogle Scholar
  12. 12.
    Vollmer MS, Clark TD, Steinem C, Ghadiri MR (1999) Photoswitchable hydrogen-bonding in self-organized cylindrical peptide systems. Angew Chem Int Ed 38(11):1598–1601CrossRefGoogle Scholar
  13. 13.
    Yagai S, Nakajima T, Kishikawa K, Kohmoto S, Karatsu T, Kitamura A (2005) Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J Am Chem Soc 127(31):11134–11139CrossRefGoogle Scholar
  14. 14.
    Pouliquen G, Tribet C (2005) Light-triggered association of bovine serum albumin and azobenzene-modified poly(acrylic acid) in dilute and semidilute solutions. Macromolecules 39(1):373–383CrossRefGoogle Scholar
  15. 15.
    Camorani P, Fontana MP (2006) Optical control of structural morphology in azobenzene containing polymeric liquid crystals. Phys Rev E 73(1):011703–011706CrossRefGoogle Scholar
  16. 16.
    Norikane Y, Hirai Y, Yoshida M (2011) Photoinduced isothermal phase transitions of liquid-crystalline macrocyclic azobenzenes. Chem Commun 47(6):1770–1772CrossRefGoogle Scholar
  17. 17.
    Wang G, Tong X, Zhao Y (2004) Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 37(24):8911–8917CrossRefGoogle Scholar
  18. 18.
    Ravi P, Sin SL, Gan LH, Gan YY, Tam KC, Xia XL, Hu X (2005) New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior. Polymer 46(1):137–146CrossRefGoogle Scholar
  19. 19.
    Sin SL, Gan LH, Hu X, Tam KC, Gan YY (2005) Photochemical and thermal isomerizations of azobenzene-containing amphiphilic diblock copolymers in aqueous micellar aggregates and in film. Macromolecules 38(9):3943–3948CrossRefGoogle Scholar
  20. 20.
    Yoshida E, Ohta M (2005) Preparation of light-stable micelles with azo dyes from a nonamphiphilic random block copolymer. Colloid Polym Sci 283(8):872–879CrossRefGoogle Scholar
  21. 21.
    Yoshida E, Ohta M (2005) Preparation of micelles with azobenzene at their coronas or cores from nonamphiphilic diblock copolymers. Colloid Polym Sci 283(5):521–531CrossRefGoogle Scholar
  22. 22.
    Sakai H, Matsumura A, Saji T, Abe M (2001) Active control of vesicle formation with photoelectrochemical switching. Stud Surf Sci Catal 132:505–508CrossRefGoogle Scholar
  23. 23.
    Tong X, Wang G, Soldera A, Zhao Y (2005) How can azobenzene block copolymer vesicles be dissociated and reformed by light? J Phys Chem B 109(43):20281–20287CrossRefGoogle Scholar
  24. 24.
    Willner I, Rubin S (1996) Control of the structure and functions of biomaterials by light. Angew Chem Int Ed 35(4):367–385CrossRefGoogle Scholar
  25. 25.
    Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40(8):4422–4437CrossRefGoogle Scholar
  26. 26.
    Montagnoli G, Pieroni O, Suzuki S (1983) Control of peptide chain conformation by photoisomerising chromophores: enzymes and model compounds. Polym Photochem 3(4):279–294CrossRefGoogle Scholar
  27. 27.
    Yamamoto H, Nishida A (1991) Photoresponsive peptide and polypeptide systems. Part 9. Synthesis and reversible photochromism of azo aromatic poly(l-a,g-diaminobutyric acid). Polym Int 24(3):145–148CrossRefGoogle Scholar
  28. 28.
    Fissi A, Pieroni O, Balestreri E, Amato C (1996) Photoresponsive polypeptides. Photomodulation of the macromolecular structure in poly(N((phenylazophenyl)sulfonyl)-l-lysine). Macromolecules 29(13):4680–4685CrossRefGoogle Scholar
  29. 29.
    Fissi A, Pieroni O, Ciardelli F (1987) Photoresponsive polymers—azobenzene-containing poly(l-lysine). Biopolymers 26(12):1993–2007CrossRefGoogle Scholar
  30. 30.
    Lee W-S, Ueno A (2001) Photocontrol of the catalytic activity of a beta-cyclodextrin bearing azobenzene and histidine moieties as a pendant group. Macromol Rapid Commun 22(6):448–450CrossRefGoogle Scholar
  31. 31.
    Pearson D, Downard AJ, Muscroft-Taylor A, Abell AD (2007) Reversible photoregulation of binding of α-chymotrypsin to a gold surface. J Am Chem Soc 129(48):14862–14863CrossRefGoogle Scholar
  32. 32.
    Shinkai S, Minami T, Kusano Y, Manabe O (1983) Photoresponsive crown ethers. 8. Azobenzenophane-type switched-on crown ethers which exhibit an all-or-nothing change in ion-binding ability. J Am Chem Soc 105(7):1851–1856CrossRefGoogle Scholar
  33. 33.
    Jung JH, Takehisa C, Sakata Y, Kaneda T (1996) p-(4-Nitrophenylazo)phenol dye-bridged permethylated a-cyclodextrin dimer: synthesis and self-aggregation in dilute aqueous solution. Chem Lett 2:147–148CrossRefGoogle Scholar
  34. 34.
    Yamamura H, Kawai H, Yotsuya T, Higuchi T, Butsugan Y, Araki S, Kawai M, Fujita K (1996) A cyclodextrin derivative with cation carrying ability: heptakis(3,6-anhydro)-b-cyclodextrin 2-O-p-phenylazobenzoate. Chem Lett 9:799–800CrossRefGoogle Scholar
  35. 35.
    Singh AK, Das J, Majumdar N (1996) Novel bacteriorhodopsin analogs based on azo chromophores. J Am Chem Soc 118(26):6185–6191CrossRefGoogle Scholar
  36. 36.
    Chen SH, Mastrangelo JC, Shi H, Blanton TN, Bashir-Hashemi A (1997) Novel glass-forming organic materials. 3. Cubane with pendant nematogens, carbazole, and disperse red 1. Macromolecules 30(1):93–97CrossRefGoogle Scholar
  37. 37.
    Chen SH, Mastrangelo JC, Shi H, Bashir-Hashemi A, Li J, Gelber N (1995) Novel glass-forming organic materials. 1. Adamantane with pendant cholesteryl, disperse red 1, and nematogenic groups. Macromolecules 28(23):7775–7778CrossRefGoogle Scholar
  38. 38.
    Ichimura K (2000) Photoalignment of liquid-crystal systems. Chem Rev 100(5):1847–1873CrossRefGoogle Scholar
  39. 39.
    Kumar GS, Neckers DC (1989) Photochemistry of azobenzene-containing polymers. Chem Rev 89(8):1915–1925CrossRefGoogle Scholar
  40. 40.
    Rau H (1990) Photoisomerization of azobenzenes. In: Rebek J (ed) Photochemistry and photophysics, vol 2. CRC Press, Boca Raton, FL, pp 119–141Google Scholar
  41. 41.
    Schulze FW, Petrick HJ, Cammenga HK, Klinge H (1977) Thermodynamic properties of the structural analogs benzo[c]cinnoline, trans-azobenzene, and cis-azobenzene. Z Phys Chem 107(1):1–19CrossRefGoogle Scholar
  42. 42.
    Mita I, Horie K, Hirao K (1989) Photochemistry in polymer solids. 9. Photoisomerization of azobenzene in a polycarbonate film. Macromolecules 22(2):558–563CrossRefGoogle Scholar
  43. 43.
    Monti S, Orlandi G, Palmieri P (1982) Features of the photochemically active state surfaces of azobenzene. Chem Phys 71(1):87–99CrossRefGoogle Scholar
  44. 44.
    Kobayashi T, Degenkolb EO, Rentzepis PM (1979) Picosecond spectroscopy of 1-phenylazo-2-hydroxynaphthalene. J Phys Chem 83(19):2431–2434CrossRefGoogle Scholar
  45. 45.
    Lednev IK, Ye T-Q, Hester RE, Moore JN (1996) Femtosecond time-resolved UV–Visible Absorption spectroscopy of trans-azobenzene in solution. J Phys Chem 100(32):13338–13341CrossRefGoogle Scholar
  46. 46.
    Brown EV, Granneman GR (1975) Cis-trans isomerism in pyridyl analogs of azobenzene—kinetic and molecular-orbital analysis. J Am Chem Soc 97(3):621–627CrossRefGoogle Scholar
  47. 47.
    Haberfield P, Block PM, Lux MS (1975) Enthalpies of solvent transfer of transition-states in cis-trans isomerization of azo-compounds - rotation vs nitrogen inversion mechanism. J Am Chem Soc 97(20):5804–5806CrossRefGoogle Scholar
  48. 48.
    Kerzhner BK, Kofanov VI, Vrubel TL (1983) Photoisomerization of aromatic azo compounds adsorbed on a hydroxylated surface. Zh Obshch Khim 53(10):2303–2306Google Scholar
  49. 49.
    Funke U, Gruetzmacher HF (1987) Dithiadiaza[n.2]paracyclophenes. Tetrahedron 43(16):3787–3795CrossRefGoogle Scholar
  50. 50.
    Hartley GS (1937) Cis form of azobenzene. Nature 140:281CrossRefGoogle Scholar
  51. 51.
    Hartley GS (1938) Cis form of azobenzene and the velocity of the thermal cis–trans conversion of azobenzene and some derivatives. J Chem Soc 1938:633–642CrossRefGoogle Scholar
  52. 52.
    Fischer E (1967) Calculation of photostationary states in systems A-B when only A is known. J Phys Chem 71(11):3704–3706CrossRefGoogle Scholar
  53. 53.
    Rau H, Greiner G, Gauglitz G, Meier H (1990) Photochemical quantum yields in the A-B system when only the spectrum of A is known. J Phys Chem 94(17):6523–6524CrossRefGoogle Scholar
  54. 54.
    Gabor G, Fischer E (1971) Spectra and cis–trans isomerism in highly dipolar derivatives of azobenzene. J Phys Chem 75(4):581–583CrossRefGoogle Scholar
  55. 55.
    Eisenbach CD (1980) Cis-trans isomerization of aromatic azo chromophores, incorporated in the hard segments of poly(ester urethane)s. Macromol Rapid Commun 1(5):287–292CrossRefGoogle Scholar
  56. 56.
    Hair SR, Taylor GA, Schultz LW (1990) An easily implemented flash-photolysis experiment for the physical-chemistry laboratory—the isomerization of 4-anilino-4’-nitroazobenzene. J Chem Educ 67(8):709–712CrossRefGoogle Scholar
  57. 57.
    Beltrame PL, Paglia ED, Castelli A, Tantardini GF, Seves A, Marcandalli B (1993) Thermal cis-trans-isomerization of azo dyes in poly(methyl methacrylate) matrix—a kinetic-study. J Appl Polym Sci 49(12):2235–2239CrossRefGoogle Scholar
  58. 58.
    Magennis SW, Mackay FS, Jones AC, Tait KM, Sadler PJ (2005) Two-photon-induced photoisomerization of an azo dye. Chem Mater 17(8):2059–2062CrossRefGoogle Scholar
  59. 59.
    Rau H, Lueddecke E (1982) On the rotation-inversion controversy on photoisomerization of azobenzenes. experimental proof of inversion. J Am Chem Soc 104(6):1616–1620CrossRefGoogle Scholar
  60. 60.
    Naito T, Horie K, Mita I (1991) Photochemistry in polymer solids. 11. The effects of the size of reaction groups and the mode of photoisomerization on photochromic reactions in polycarbonate film. Macromolecules 24(10):2907–2911CrossRefGoogle Scholar
  61. 61.
    Liu ZF, Morigaki K, Enomoto T, Hashimoto K, Fujishima A (1992) Kinetic studies on the thermal cis-trans isomerization of an azo compound in the assembled monolayer film. J Phys Chem 96(4):1875–1880CrossRefGoogle Scholar
  62. 62.
    Altomare A, Ciardelli F, Tirelli N, Solaro R (1997) 4-Vinylazobenzene: polymerizability and photochromic properties of its polymers. Macromolecules 30(5):1298–1303CrossRefGoogle Scholar
  63. 63.
    Ho C-H, Yang K-N, Lee S-N (2001) Mechanistic study of trans-cis isomerization of the substituted azobenzene moiety bound on a liquid-crystalline polymer. J Polym Sci, Part A: Polym Chem 39(13):2296–2307CrossRefGoogle Scholar
  64. 64.
    Xie S, Natansohn A, Rochon P (1993) Recent developments in aromatic azo polymers research. Chem Mater 5(4):403–411CrossRefGoogle Scholar
  65. 65.
    Jursic BS (1996) Ab initio and density functional theory study of the diazene isomerization. Chem Phys Lett 261(1–2):13–17CrossRefGoogle Scholar
  66. 66.
    Angeli C, Cimiraglia R, Hofmann H-J (1996) On the competition between the inversion and rotation mechanisms in the cis-trans thermal isomerization of diazene. Chem Phys Lett 259(3–4):276–282CrossRefGoogle Scholar
  67. 67.
    Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102(11):4139–4176CrossRefGoogle Scholar
  68. 68.
    Viswanathan NK, Balasubramanian S, Li L, Tripathy SK, Kumar J (1999) A detailed investigation of the polarization-dependent surface-relief-grating formation process on azo polymer films. Jpn J Appl Phys 38(10):5928–5937CrossRefGoogle Scholar
  69. 69.
    Yager KG, Barrett CJ (2001) All-optical patterning of azo polymer films. Curr Opin Solid State Mater Sci 5(6):487–494CrossRefGoogle Scholar
  70. 70.
    Uznanski P, Kryszewski M, Thulstrup EW (1991) Linear dichroism and trans-cis photo-isomerization studies of azobenzene molecules in oriented polyethylene matrix. Eur Polym J 27(1):41–43CrossRefGoogle Scholar
  71. 71.
    de Lange JJ, Robertson JM, Woodward I (1939) X-ray crystal analysis of trans-azobenzene. Proc Roy Soc A Math Phys Eng Sci 171:398–410CrossRefGoogle Scholar
  72. 72.
    Hampson GC, Robertson JM (1941) Bond length and resonance in the cis-azobenzene molecule. J Chem Soc 2:409–413CrossRefGoogle Scholar
  73. 73.
    Brown CJ (1966) A refinement of the crystal structure of azobenzene. Acta Cryst 21(1):146–152CrossRefGoogle Scholar
  74. 74.
    Naito T, Horie K, Mita I (1993) Photochemistry in polymer solids: 12. Effects of main-chain structures and formation of hydrogen bonds on photoisomerization of azobenzene in various polymer films. Polymer 34(19):4140–4145CrossRefGoogle Scholar
  75. 75.
    Paik CS, Morawetz H (1972) Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk. Macromolecules 5(2):171–177CrossRefGoogle Scholar
  76. 76.
    Lamarre L, Sung CSP (1983) Studies of physical aging and molecular motion by azochromophoric labels attached to the main chains of amorphous polymers. Macromolecules 16(11):1729–1736CrossRefGoogle Scholar
  77. 77.
    Weiss RG, Ramamurthy V, Hammond GS (1993) Photochemistry in organized and confining media: a model. Acc Chem Res 25(10):530–536CrossRefGoogle Scholar
  78. 78.
    Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE (2002) Single-molecule optomechanical cycle. Science 296(5570):1103–1106CrossRefGoogle Scholar
  79. 79.
    Holland NB, Hugel T, Neuert G, Cattani-Scholz A, Renner C, Oesterhelt D, Moroder L, Seitz M, Gaub HE (2003) Single molecule force spectroscopy of azobenzene polymers: switching elasticity of single photochromic macromolecules. Macromolecules 36(6):2015–2023CrossRefGoogle Scholar
  80. 80.
    Neuert G, Hugel T, Netz RR, Gaub HE (2005) Elasticity of poly(azobenzene-peptides). Macromolecules 39(2):789–797CrossRefGoogle Scholar
  81. 81.
    Asakawa M, Ashton PR, Balzani V, Brown CL, Credi A, Matthews OA, Newton SP, Raymo FM, Shipway AN, Spencer N, Quick A, Stoddart JF, White AJP, Williams DJ (1999) Photoactive azobenzene-containing supramolecular complexes and related interlocked molecular compounds. Chem A Eur J 5(3):860–875CrossRefGoogle Scholar
  82. 82.
    Balzani V, Credi A, Marchioni F, Stoddart JF (2001) Artificial molecular-level machines. Dethreading-rethreading of a pseudorotaxane powered exclusively by light energy. Chem Commun 18:1860–1861CrossRefGoogle Scholar
  83. 83.
    Tsuchiya S (1999) Intramolecular electron transfer of diporphyrins comprised of electron-deficient porphyrin and electron-rich porphyrin with photocontrolled isomerization. J Am Chem Soc 121(1):48–53CrossRefGoogle Scholar
  84. 84.
    Masiero S, Lena S, Pieraccini S, Spada GP (2008) The direct conversion of light into continuous mechanical energy by photoreversible self-assembly: a prototype of a light-powered engine. Angew Chem Int Ed 47(17):3184–3187CrossRefGoogle Scholar
  85. 85.
    Fujiwara M, Akiyama M, Hata M, Shiokawa K, Nomura R (2008) Photoinduced acceleration of the effluent rate of developing solvents in azobenzene-tethered silica gel. ACS Nano 2(8):1671–1681CrossRefGoogle Scholar
  86. 86.
    Pakula C, Zaporojtchenko V, Strunskus T, Zargarani D, Herges R, Faupel F (2010) Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites. Nanotechnology 21(46):465201CrossRefGoogle Scholar
  87. 87.
    Raimondo C, Reinders F, Soydaner U, Mayor M, Samorì P (2010) Light-responsive reversible solvation and precipitation of gold nanoparticles. Chem Commun 46(7):1147–1149CrossRefGoogle Scholar
  88. 88.
    Kimoto A, Iwasaki K, Abe J (2010) Formation of photoresponsive gold nanoparticle networks via click chemistry. Photochem Photobiol Sci 9(2):152–156CrossRefGoogle Scholar
  89. 89.
    Higuchi M, Minoura N, Kinoshita T (1995) Photo-responsive behavior of a monolayer composed of an azobenzene containing polypeptide in the main-chain. Colloid Polym Sci 273(11):1022–1027CrossRefGoogle Scholar
  90. 90.
    Siewierski LM, Brittain WJ, Petrash S, Foster MD (1996) Photoresponsive monolayers containing in-chain azobenzene. Langmuir 12(24):5838–5844CrossRefGoogle Scholar
  91. 91.
    Stiller B, Knochenhauer G, Markava E, Gustina D, Muzikante I, Karageorgiev P, Brehmer L (1999) Self-assembled monolayers of novel azobenzenes for optically induced switching. Mater Sci Eng, C 8–9:385–389CrossRefGoogle Scholar
  92. 92.
    Moller G, Harke M, Motschmann H, Prescher D (1998) Controlling microdroplet formation by light. Langmuir 14(18):4955–4957CrossRefGoogle Scholar
  93. 93.
    Feng CL, Zhang YJ, Jin J, Song YL, Xie LY, Qu GR, Jiang L, Zhu DB (2001) Reversible wettability of photoresponsive fluorine-containing azobenzene polymer in Langmuir–Blodgett films. Langmuir 17(15):4593–4597CrossRefGoogle Scholar
  94. 94.
    Chen T, Xu S, Zhang F, Evans DG, Duan X (2009) Formation of photo- and thermo-stable layered double hydroxide films with photo-responsive wettability by intercalation of functionalized azobenzenes. Chem Eng Sci 64(21):4350–4357CrossRefGoogle Scholar
  95. 95.
    Delorme N, Bardeau J-F, Bulou A, Poncin-Epaillard F (2005) Azobenzene-containing monolayer with photoswitchable wettability. Langmuir 21(26):12278–12282CrossRefGoogle Scholar
  96. 96.
    Jiang WH, Wang GJ, He YN, Wang XG, An YL, Song YL, Jiang L (2005) Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer. Chem Commun 28:3550–3552CrossRefGoogle Scholar
  97. 97.
    Ichimura K, Oh S-K, Nakagawa M (2000) Light-driven motion of liquids on a photoresponsive surface. Science 288(5471):1624–1626CrossRefGoogle Scholar
  98. 98.
    Diguet A, Guillermic R-M, Magome N, Saint-Jalmes A, Chen Y, Yoshikawa K, Baigl D (2009) Photomanipulation of a droplet by the chromocapillary effect. Angew Chem Int Ed 48(49):9281–9284CrossRefGoogle Scholar
  99. 99.
    Sarkar N, Sarkar A, Sivaram S (2001) Isomerization behavior of aromatic azo chromophores bound to semicrystalline polymer films. J Appl Polym Sci 81(12):2923–2928CrossRefGoogle Scholar
  100. 100.
    Fujita T, Iyi N, Klapyta Z (1998) Preparation of azobenzene-mica complex and its photoresponse to ultraviolet irradiation. Mater Res Bull 33(11):1693–1701CrossRefGoogle Scholar
  101. 101.
    Fujita T, Iyi N, Klapyta Z (2001) Optimum conditions for photoresponse of azobenzene-organophilic tetrasilicic mica complexes. Mater Res Bull 36(3–4):557–571CrossRefGoogle Scholar
  102. 102.
    Yager KG, Tanchak OM, Godbout C, Fritzsche H, Barrett CJ (2006) Photomechanical effects in azo-polymers studied by neutron reflectometry. Macromolecules 39(26):9311–9319CrossRefGoogle Scholar
  103. 103.
    Tanchak OM, Barrett CJ (2005) Light-induced reversible volume changes in thin films of azo polymers: the photomechanical effect. Macromolecules 38(25):10566–10570CrossRefGoogle Scholar
  104. 104.
    Yager KG, Tanchak OM, Barrett CJ, Watson MJ, Fritzsche H (2006) Temperature-controlled neutron reflectometry sample cell suitable for study of photoactive thin films. Rev Sci Instrum 77(4):045106CrossRefGoogle Scholar
  105. 105.
    Eisenbach CD (1980) Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect. Polymer 21(10):1175–1179CrossRefGoogle Scholar
  106. 106.
    Agolini F, Gay FP (1970) Synthesis and properties of azoaromatic polymers. Macromolecules 3(3):349–351CrossRefGoogle Scholar
  107. 107.
    Yu Y, Nakano M, Ikeda T (2003) Photomechanics: directed bending of a polymer film by light. Nature 425:145CrossRefGoogle Scholar
  108. 108.
    Ikeda T, Nakano M, Yu Y, Tsutsumi O, Kanazawa A (2003) Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv Mater 15(3):201–205CrossRefGoogle Scholar
  109. 109.
    Yu YL, Nakano M, Maeda T, Kondo M, Ikeda T (2005) Precisely direction-controllable bending of cross-linked liquid-crystalline polymer films by light. Mol Cryst Liq Cryst 436:1235–1244CrossRefGoogle Scholar
  110. 110.
    Bai S, Zhao Y (2001) Azobenzene-containing thermoplastic elastomers: coupling mechanical and optical effects. Macromolecules 34(26):9032–9038CrossRefGoogle Scholar
  111. 111.
    Rochon P, Batalla E, Natansohn A (1995) Optically induced surface gratings on azoaromatic polymer films. Appl Phys Lett 66(2):136–138CrossRefGoogle Scholar
  112. 112.
    Kim DY, Tripathy SK, Li L, Kumar J (1995) Laser-induced holographic surface relief gratings on nonlinear optical polymer films. Appl Phys Lett 66(10):1166–1168CrossRefGoogle Scholar
  113. 113.
    Bian S, Li L, Kumar J, Kim DY, Williams J, Tripathy SK (1998) Single laser beam-induced surface deformation on azobenzene polymer films. Appl Phys Lett 73(13):1817–1819CrossRefGoogle Scholar
  114. 114.
    Kumar J, Li L, Jiang XL, Kim DY, Lee TS, Tripathy S (1998) Gradient force: the mechanism for surface relief grating formation in azobenzene functionalized polymers. Appl Phys Lett 72(17):2096–2098CrossRefGoogle Scholar
  115. 115.
    Viswanathan NK, Kim DY, Bian S, Williams J, Liu W, Li L, Samuelson L, Kumar J, Tripathy SK (1999) Surface relief structures on azo polymer films. J Mater Chem 9(9):1941–1955CrossRefGoogle Scholar
  116. 116.
    Labarthet FL, Bruneel JL, Buffeteau T, Sourisseau C (2004) Chromophore orientations upon irradiation in gratings inscribed on azo-dye polymer films: a combined AFM and confocal Raman microscopic study. J Phys Chem B 108(22):6949–6960CrossRefGoogle Scholar
  117. 117.
    Lagugne-Labarthet F, Bruneel JL, Rodriguez V, Sourisseau C (2004) Chromophore orientations in surface relief gratings with second-order nonlinearity as studied by confocal polarized Raman microspectrometry. J Phys Chem B 108(4):1267–1278CrossRefGoogle Scholar
  118. 118.
    Labarthet FL, Bruneel JL, Buffeteau T, Sourisseau C, Huber MR, Zilker SJ, Bieringer T (2000) Photoinduced orientations of azobenzene chromophores in two distinct holographic diffraction gratings as studied by polarized Raman confocal microspectrometry. Phys Chem Chem Phys 2(22):5154–5167CrossRefGoogle Scholar
  119. 119.
    Henneberg O, Geue T, Pietsch U, Saphiannikova M, Winter B (2004) Investigation of azobenzene side group orientation in polymer surface relief gratings by means of photoelectron spectroscopy. Appl Phys Lett 84(9):1561–1563CrossRefGoogle Scholar
  120. 120.
    Saphiannikova M, Neher D (2005) Thermodynamic theory of light-induced material transport in amorphous azobenzene polymer films. J Phys Chem B 109(41):19428–19436CrossRefGoogle Scholar
  121. 121.
    Toshchevikov V, Saphiannikova M, Heinrich G (2009) Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers. J Phys Chem B 113(15):5032–5045CrossRefGoogle Scholar
  122. 122.
    Vapaavuori J, Valtavirta V, Alasaarela T, Mamiya JI, Priimagi A, Shishido A, Kaivola M (2011) Efficient surface structuring and photoalignment of supramolecular polymer-azobenzene complexes through rational chromophore design. J Mater Chem 21(39):15437–15441CrossRefGoogle Scholar
  123. 123.
    Pietsch U, Rochon P, Natansohn A (2000) Formation of a buried lateral density grating in azobenzene polymer films. Adv Mater 12(15):1129–1132CrossRefGoogle Scholar
  124. 124.
    Geue T, Henneberg O, Grenzer J, Pietsch U, Natansohn A, Rochon P, Finkelstein K (2002) Formation of a buried density grating on thermal erasure of azobenzene polymer surface gratings. Coll Surf A 198–200:31–36CrossRefGoogle Scholar
  125. 125.
    Geue TM, Saphiannikova MG, Henneberg O, Pietsch U, Rochon PL, Natansohn AL (2003) X-ray investigations of formation efficiency of buried azobenzene polymer density gratings. J Appl Phys 93(6):3161–3166CrossRefGoogle Scholar
  126. 126.
    Pietsch U (2002) X-ray and visible light scattering from light-induced polymer gratings. Phys Rev B 66(15):155430CrossRefGoogle Scholar
  127. 127.
    Barrett CJ, Natansohn AL, Rochon PL (1996) Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films. J Phys Chem 100(21):8836–8842CrossRefGoogle Scholar
  128. 128.
    Priimagi A, Lindfors K, Kaivola M, Rochon P (2009) efficient surface-relief gratings in hydrogen-bonded polymer-azobenzene complexes. ACS Appl Mater Interfaces 1(6):1183–1189CrossRefGoogle Scholar
  129. 129.
    Wang X, Balasubramanian S, Kumar J, Tripathy SK, Li L (1998) Azo chromophore-functionalized polyelectrolytes. 1. Synthesis, characterization, and photoprocessing. Chem Mater 10(6):1546–1553CrossRefGoogle Scholar
  130. 130.
    He J-A, Bian S, Li L, Kumar J, Tripathy SK, Samuelson LA (2000) Surface relief gratings from electrostatically layered azo dye films. Appl Phys Lett 76(22):3233–3235CrossRefGoogle Scholar
  131. 131.
    Lee S-H, Balasubramanian S, Kim DY, Viswanathan NK, Bian S, Kumar J, Tripathy SK (2000) Azo polymer multilayer films by electrostatic self-assembly and layer-by-layer post azo functionalization. Macromolecules 33(17):6534–6540CrossRefGoogle Scholar
  132. 132.
    Zhang Q, Wang X, Barrett CJ, Bazuin CG (2009) Spacer-free ionic dye-polyelectrolyte complexes: influence of molecular structure on liquid crystal order and photoinduced motion. Chem Mater 21(14):3216–3227CrossRefGoogle Scholar
  133. 133.
    Yang SZ, Li L, Cholli AL, Kumar J, Tripathy SK (2001) Photoinduced surface relief gratings on azocellulose films. J Macromol Sci, Pure Appl Chem 38(12):1345–1354CrossRefGoogle Scholar
  134. 134.
    Yang S, Jacob MM, Li L, Yang K, Cholli AL, Kumar J, Tripathy SK (2002) Azobenzene-modified cellulose. Polymer News 27:368–372Google Scholar
  135. 135.
    Yang SZ, Li L, Cholli AL, Kumar J, Tripathy SK (2003) Ambenzene-modified poly(l-glutamic acid) (AZOPLGA): its conformational and photodynamic properties. Biomacromolecules 4(2):366–371CrossRefGoogle Scholar
  136. 136.
    Nakano H, Tanino T, Takahashi T, Ando H, Shirota Y (2008) Relationship between molecular structure and photoinduced surface relief grating formation using azobenzene-based photochromic amorphous molecular materials. J Mater Chem 18(2):242–246CrossRefGoogle Scholar
  137. 137.
    Walker R, Audorff H, Kador L, Schmidt HW (2009) Synthesis and structure-property relations of a series of photochromic molecular classes for controlled and efficient formation of surface relief nanostructures. Adv Funct Mater 19(16):2630–2638CrossRefGoogle Scholar
  138. 138.
    Ubukata T, Takahashi K, Yokoyama Y (2007) Photoinduced surface relief structures formed on polymer films doped with photochromic spiropyrans. J Phys Org Chem 20(11):981–984CrossRefGoogle Scholar
  139. 139.
    Ubukata T, Fujii S, Yokoyama Y (2009) Reversible phototriggered micromanufacturing using amorphous photoresponsive spirooxazine film. J Mater Chem 19(21):3373–3377CrossRefGoogle Scholar
  140. 140.
    Zettsu N, Ubukata T, Seki T, Ichimura K (2001) Soft crosslinkable azo polymer for rapid surface relief formation and persistent fixation. Adv Mater 13(22):1693–1697CrossRefGoogle Scholar
  141. 141.
    Li W, Nagano S, Seki T (2009) Photo-crosslinkable liquid-crystalline azo-polymer for surface relief gratings and persistent fixation. New J Chem 33(6):1343–1348CrossRefGoogle Scholar
  142. 142.
    Goldenberg LM, Kulikovsky L, Kulikovska O, Stumpe J (2009) New materials with detachable azobenzene: effective, colourless and extremely stable surface relief gratings. J Mater Chem 19(43):8068–8071CrossRefGoogle Scholar
  143. 143.
    Zettsu N, Ogasawara T, Mizoshita N, Nagano S, Seki T (2008) Photo-triggered surface relief grating formation in supramolecular liquid crystalline polymer systems with detachable azobenzene units. Adv Mater 20(3):516–521CrossRefGoogle Scholar
  144. 144.
    Tripathy SK, Viswanathan NK, Balasubramanian S, Kumar J (2000) Holographic fabrication of polarization selective diffractive optical elements on azopolymer film. Polym Adv Technol 11(8–12):570–574CrossRefGoogle Scholar
  145. 145.
    Rochon P, Natansohn A, Callendar CL, Robitaille L (1997) Guided mode resonance filters using polymer films. Appl Phys Lett 71(8):1008–1010CrossRefGoogle Scholar
  146. 146.
    Stockermans RJ, Rochon PL (1999) Narrow-band resonant grating waveguide filters constructed with azobenzene polymers. Appl Opt 38(17):3714–3719CrossRefGoogle Scholar
  147. 147.
    Alasaarela T, Zheng D, Huang L, Priimagi A, Bai B, Tervonen A, Honkanen S, Kuittinen M, Turunen J (2011) Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence. Opt Lett 36(13):2411–2413CrossRefGoogle Scholar
  148. 148.
    Paterson J, Natansohn A, Rochon P, Callendar CL, Robitaille L (1996) Optically inscribed surface relief diffraction gratings on azobenzene-containing polymers for coupling light into slab waveguides. Appl Phys Lett 69(22):3318–3320CrossRefGoogle Scholar
  149. 149.
    Nagata T, Matsui T, Ozaki M, Yoshino K, Kajzar F (2001) Novel optical properties of conducting polymer-photochromic polymer systems. Synthetic Met 119(1–3):607–608CrossRefGoogle Scholar
  150. 150.
    Dumarcher V, Rocha L, Denis C, Fiorini C, Nunzi J-M, Sobel F, Sahraoui B, Gindre D (2000) Polymer thin-film distributed feedback tunable lasers. J Opt A: Pure Appl Opt 2(4):279–283CrossRefGoogle Scholar
  151. 151.
    Rocha L, Dumarcher V, Denis C, Raimond P, Fiorini C, Nunzi JM (2001) Laser emission in periodically modulated polymer films. J Appl Phys 89(5):3067–3069CrossRefGoogle Scholar
  152. 152.
    Ubukata T, Isoshima T, Hara M (2005) Wavelength-programmable organic distributed-feedback laser based on a photoassisted polymer-migration system. Adv Mater 17(13):1630–1633CrossRefGoogle Scholar
  153. 153.
    Egami C, Kawata Y, Aoshima Y, Alasfar S, Sugihara O, Fujimura H, Okamoto N (2000) Two-stage optical data storage in azo polymers. Jpn J Appl Phys 39(3B):1558–1561CrossRefGoogle Scholar
  154. 154.
    Harada K, Itoh M, Yatagai T, Kamemaru SI (2005) Application of surface relief hologram using azobenzene containing polymer film. Opt Rev 12(2):130–134CrossRefGoogle Scholar
  155. 155.
    Ramanujam PS, Pedersen M, Hvilsted S (1999) Instant holography. Appl Phys Lett 74(21):3227–3229CrossRefGoogle Scholar
  156. 156.
    Na SI, Kim SS, Jo J, Oh SH, Kim J, Kim DY (2008) Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography. Adv Funct Mater 18(24):3956–3963CrossRefGoogle Scholar
  157. 157.
    Gritsai Y et al (2008) 3D structures using surface relief gratings of azobenzene materials. J Opt A: Pure Appl Opt 10(12):125304CrossRefGoogle Scholar
  158. 158.
    Neumann J, Wieking KS, Kip D (1999) Direct laser writing of surface reliefs in dry, self-developing photopolymer films. Appl Opt 38(25):5418–5421CrossRefGoogle Scholar
  159. 159.
    Li XT, Natansohn A, Rochon P (1999) Photoinduced liquid crystal alignment based on a surface relief grating in an assembled cell. Appl Phys Lett 74(25):3791–3793CrossRefGoogle Scholar
  160. 160.
    Kim M-H, Kim J-D, Fukuda T, Matsuda H (2000) Alignment control of liquid crystals on surface relief gratings. Liq Cryst 27(12):1633–1640CrossRefGoogle Scholar
  161. 161.
    Parfenov A, Tamaoki N, Ohnishi S (2000) Photoinduced alignment of nematic liquid crystal on the polymer surface microrelief. J Appl Phys 87(4):2043–2045CrossRefGoogle Scholar
  162. 162.
    Parfenov A, Tamaoki N, Ohni-Shi S (2001) Photoinduced alignment of nematic liquid crystal on the polymer surface microrelief. Mol Cryst Liq Cryst 359:487–495Google Scholar
  163. 163.
    Kaneko F, Kato T, Baba A, Shinbo K, Kato K, Advincula RC (2002) Photo-induced fabrication of surface relief gratings in alternate self-assembled films containing azo dye and alignments of LC molecules. Coll Surf A 198:805–810CrossRefGoogle Scholar
  164. 164.
    Ishow E, Brosseau A, Clavier G, Nakatani K, Pansu RB, Vachon J-J, Tauc P, Chauvat D, Mendonça CR, Piovesan E (2007) Two-photon fluorescent holographic rewritable micropatterning. J Am Chem Soc 129(29):8970–8971CrossRefGoogle Scholar
  165. 165.
    Chen X, Liu B, Zhang H, Guan S, Zhang J, Zhang W, Chen Q, Jiang Z, Guiver MD (2009) Fabrication of fluorescent holographic micropatterns based on azobenzene-containing host-guest complexes. Langmuir 25(18):10444–10446CrossRefGoogle Scholar
  166. 166.
    Ye YH, Badilescu S, Truong VV, Rochon P, Natansohn A (2001) Self-assembly of colloidal spheres on patterned substrates. Appl Phys Lett 79(6):872–874CrossRefGoogle Scholar
  167. 167.
    Yi DK, Kim MJ, Kim DY (2002) Surface relief grating induced colloidal crystal structures. Langmuir 18(6):2019–2023CrossRefGoogle Scholar
  168. 168.
    Yi DK, Seo E-M, Kim D-Y (2002) Fabrication of a mesoscale wire: sintering of a polymer colloid arrayed inside a one-dimensional groove pattern. Langmuir 18(13):5321–5323CrossRefGoogle Scholar
  169. 169.
    Noel S, Batalla E, Rochon P (1996) A simple method for the manufacture of mesoscopic metal wires. J Mater Res 11(4):865–867CrossRefGoogle Scholar
  170. 170.
    Kim SS, Chun C, Hong JC, Kim DY (2006) Well-ordered TiO2 nanostructures fabricated using surface relief gratings on polymer films. J Mater Chem 16(4):370–375CrossRefGoogle Scholar
  171. 171.
    Morikawa Y, Nagano S, Watanabe K, Kamata K, Iyoda T, Seki T (2006) Optical alignment and patterning of nanoscale microdomains in a block copolymer thin film. Adv Mater 18(7):883–886CrossRefGoogle Scholar
  172. 172.
    Liu B, Wang M, He Y, Wang X (2006) Duplication of photoinduced azo polymer surface-relief gratings through a soft lithographic approach. Langmuir 22(17):7405–7410CrossRefGoogle Scholar
  173. 173.
    Ye G, Li X, Wang X (2010) Diffraction grating of hydrogel functionalized with glucose oxidase for glucose detection. Chem Commun 46(22):3872–3874CrossRefGoogle Scholar
  174. 174.
    Lee S, Kang HS, Park JK (2011) High-resolution patterning of various large-area, highly ordered structural motifs by directional photofluidization lithography: sub-30-nm line, ellipsoid, rectangle, and circle arrays. Adv Funct Mater 21(10):1770–1778CrossRefGoogle Scholar
  175. 175.
    Lee S, Shin J, Lee YH, Fan S, Park JK (2010) Directional photofluidization lithography for nanoarchitectures with controlled shapes and sizes. Nano Lett 10(1):296–304CrossRefGoogle Scholar
  176. 176.
    Kravchenko A, Shevchenko A, Ovchinnikov V, Priimagi A, Kaivola M (2011) Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon. Adv Mater 23(36):4174–4177CrossRefGoogle Scholar
  177. 177.
    Ikawa T, Kato Y, Yamada T, Shiozawa M, Narita M, Mouri M, Hoshino F, Watanabe O, Tawata M, Shimoyama H (2010) Virus-templated photoimprint on the surface of an azobenzene-containing polymer. Langmuir 26(15):12673–12679CrossRefGoogle Scholar
  178. 178.
    Watanabe O, Ikawa T, Hasegawa M, Tsuchimori M, Kawata Y, Egami C, Sugihara O, Okamoto N (2000) Transcription of near-field induced by photo-irradiation on a film of azo-containing urethane-urea copolymer. Mol Cryst Liq Cryst 345:629–634Google Scholar
  179. 179.
    Ikawa T, Mitsuoka T, Hasegawa M, Tsuchimori M, Watanabe O, Kawata Y, Egami C, Sugihara O, Okamoto N (2000) Optical near field induced change in viscoelasticity on an azobenzene-containing polymer surface. J Phys Chem B 104(39):9055–9058CrossRefGoogle Scholar
  180. 180.
    Hasegawa M, Ikawa T, Tsuchimori M, Watanabe O, Kawata Y (2001) Topographical nanostructure patterning on the surface of a thin film of polyurethane containing azobenzene moiety using the optical near field around polystyrene spheres. Macromolecules 34(21):7471–7476CrossRefGoogle Scholar
  181. 181.
    Hasegawa M, Keum C-D, Watanabe O (2002) Enhanced photofabrication of a surface nanostructure on azobenzene-functionalized polymer films with evaporated gold nanoislands. Adv Mater 14(23):1738–1741CrossRefGoogle Scholar
  182. 182.
    Keum CD, Ikawa T, Tsuchimori M, Watanabe O (2003) Photodeformation behavior of photodynamic polymers bearing azobenzene moieties in their main and/or side chain. Macromolecules 36(13):4916–4923CrossRefGoogle Scholar
  183. 183.
    Fukuda T, Sumaru K, Kimura T, Matsuda H, Narita Y, Inoue T, Sato F (2001) Observation of optical near-field as photo-induced surface relief formation. Jpn J Appl Phys 40(8B):L900–L902CrossRefGoogle Scholar
  184. 184.
    Galarreta BC, Rupar I, Young A, Lagugné-Labarthet F (2011) Mapping hot-spots in hexagonal arrays of metallic nanotriangles with azobenzene polymer thin films. J Phys Chem C 115(31):15318–15323CrossRefGoogle Scholar
  185. 185.
    Hubert C, Rumyantseva A, Lerondel G, Grand J, Kostcheev S, Billot L, Vial A, Bachelot R, Royer P, Chang SH, Gray SK, Wiederrecht GP, Schatz GC (2005) Near-field photochemical imaging of noble metal nanostructures. Nano Lett 5(4):615–619CrossRefGoogle Scholar
  186. 186.
    Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M (2004) Fast liquid-crystal elastomer swims into the dark. Nat Mater 3(5):307–310CrossRefGoogle Scholar
  187. 187.
    Bublitz D, Helgert M, Fleck B, Wenke L, Hvilsted S, Ramanujam PS (2000) Photoinduced deformation of azobenzene polyester films. Appl Phys B: Lasers Opt 70(6):863–865CrossRefGoogle Scholar
  188. 188.
    Ji HF, Feng Y, Xu XH, Purushotham V, Thundat T, Brown GM (2004) Photon-driven nanomechanical cyclic motion. Chem Commun 22:2532–2533CrossRefGoogle Scholar
  189. 189.
    White TJ, Tabiryan NV, Serak SV, Hrozhyk UA, Tondiglia VP, Koerner H, Vaia RA, Bunning TJ (2008) A high frequency photodriven polymer oscillator. Soft Matter 4(9):1796–1798CrossRefGoogle Scholar
  190. 190.
    White TJ, Serak SV, Tabiryan NV, Vaia RA, Bunning TJ (2009) Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J Mater Chem 19(8):1080–1085CrossRefGoogle Scholar
  191. 191.
    Serak S, Tabiryan N, Vergara R, White TJ, Vaia RA, Bunning TJ (2010) Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6(4):779–783CrossRefGoogle Scholar
  192. 192.
    Chen M, Huang H, Zhu Y, Liu Z, Xing X, Cheng F, Yu Y (2010) Photodeformable CLCP material: study on photo-activated microvalve applications. Appl Phys A Mater Sci Proc 102(3):667–672Google Scholar
  193. 193.
    Yamada M, Kondo M, Mamiya JI, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47(27):4986–4988CrossRefGoogle Scholar
  194. 194.
    Blair HS, Ivor Pogue H (1982) Photomechanical effects in polymers containing 6′-nitro-1,3,3-trimethyl-spiro-(2′H-1′-benzopyran -2,2′-indoline). Polymer 23(5):779–783CrossRefGoogle Scholar
  195. 195.
    Blair HS, Pague HI, Riordan JE (1980) Photoresponsive effects in azo polymers. Polymer 21(10):1195–1198CrossRefGoogle Scholar
  196. 196.
    Menzel H, Weichart B, Hallensleben ML (1992) Langmuir–Blodgett-films of photochromic polyglutamates-II. Synthesis and spreading behaviour of photochromic polyglutamates with alkylspacers and -tails of different length. Polym Bull 27(6):637–644CrossRefGoogle Scholar
  197. 197.
    Menzel H (1994) Langmuir–Boldgett-films of photochromic polyglutamates. 7. The photomechanical effect in monolayers of polyglutamate with azobenzene moieties in the side-chains. Macromol Chem Phys 195(12):3747–3757CrossRefGoogle Scholar
  198. 198.
    Seki T, Tamaki T (1993) Photomechanical effect in monolayers of azobenzene side-chain polymers. Chem Lett 10:1739–1742CrossRefGoogle Scholar
  199. 199.
    Seki T, Sekizawa H, Fukuda RI, Tamaki T, Yokoi M, Ichimura K (1996) Features of photomechanical response in monolayers composed of a charged amphiphilic azobenzene polymer. Polym J 28(7):613–618CrossRefGoogle Scholar
  200. 200.
    Seki T, Ichimura K, Fukuda RI, Tamaki T (1996) Photomechanical behaviour of monolayers of azobenzene derivatives. Thin Solid Films 284–285:365–367CrossRefGoogle Scholar
  201. 201.
    Seki T (2004) Dynamic photoresponsive functions in organized layer systems comprised of azobenzene-containing polymers. Polym J 36(6):435–454CrossRefGoogle Scholar
  202. 202.
    Seki T, Tanaka K, Ichimura K (1997) Photomechanical response in monolayered polymer films on mica at high humidity. Macromolecules 30(20):6401–6403CrossRefGoogle Scholar
  203. 203.
    Seki T, Sekizawa H, Morino SY, Ichimura K (1998) Inherent and cooperative photomechanical motions in monolayers of an azobenzene containing polymer at the air-water interface. J Phys Chem B 102(27):5313–5321CrossRefGoogle Scholar
  204. 204.
    Kago K, Fürst M, Matsuoka H, Yamaoka H, Seki T (1999) Direct observation of photoisomerization of a polymer monolayer on a water surface by X-ray reflectometry. Langmuir 15(7):2237–2240CrossRefGoogle Scholar
  205. 205.
    Seki T, Kojima JY, Ichimura K (2000) Multifarious photoinduced morphologies in monomolecular films of azobenzene side chain polymer on mica. Macromolecules 33(7):2709–2717CrossRefGoogle Scholar
  206. 206.
    Kago K, Seki T, Schücke RR, Mouri E, Matsuoka H, Yamaoka H (2002) Nanostructure of a photochromic polymer/liquid crystal hybrid monolayer on a water surface observed by in situ X-ray reflectometry. Langmuir 18(10):3875–3879CrossRefGoogle Scholar
  207. 207.
    Seki T, Fukuchi T, Ichimura K (2002) Role of hydrogen bonding in azobenzene-urea assemblies. The packing state and photoresponse behavior in Langmuir monolayers. Langmuir 18(14):5462–5467CrossRefGoogle Scholar
  208. 208.
    Klajn R (2010) Immobilized azobenzenes for the construction of photoresponsive materials. Pure Appl Chem 82(12):2247–2276CrossRefGoogle Scholar
  209. 209.
    Liu C, Chun SB, Mather PT, Zheng L, Haley EH, Coughlin EB (2002) Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior. Macromolecules 35(27):9868–9874CrossRefGoogle Scholar
  210. 210.
    Otero TF, Cortés MT (2003) Artificial muscles with tactile sensitivity. Adv Mater 15(4):279–282CrossRefGoogle Scholar
  211. 211.
    Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44(16):2410–2413CrossRefGoogle Scholar
  212. 212.
    Gao J, Sansiñena JM, Wang HL (2003) Tunable polyaniline chemical actuators. Chem Mater 15(12):2411–2418CrossRefGoogle Scholar
  213. 213.
    Merian E (1966) Steric factors influencing the dyeing of hydrophobic fibers. Text Res J 36(7):612–618CrossRefGoogle Scholar
  214. 214.
    Irie M (1990) Photoresponsive polymers. Adv Polym Sci 94:26–67Google Scholar
  215. 215.
    Smets GaD F (1974) Chemical reactions in solid polymeric systems. Photomechanical phenomena. Pure Appl Chem 39(1–2):225–238CrossRefGoogle Scholar
  216. 216.
    Matějka L, Dušek K, Ilavský M (1979) The thermal effect in the photomechanical conversion of a photochromic polymer. Polym Bull 1(9):659–664CrossRefGoogle Scholar
  217. 217.
    Matějka L, Ilavský M, Dušek K, Wichterle O (1981) Photomechanical effects in crosslinked photochromic polymers. Polymer 22(11):1511–1515CrossRefGoogle Scholar
  218. 218.
    Matějka L, Dušek K (1981) Photochromic polymers: photoinduced conformational changes and effect of polymeric matrix on the isomerization of photochromes. Die Makromol Chem 182(11):3223–3236CrossRefGoogle Scholar
  219. 219.
    Yager KG, Barrett CJ (2006) Photomechanical surface patterning in azo-polymer materials. Macromolecules 39(26):9320–9326CrossRefGoogle Scholar
  220. 220.
    Kim HK, Wang XS, Fujita Y, Sudo A, Nishida H, Fujii M, Endo T (2005) Photomechanical switching behavior of semi-interpenetrating polymer network consisting of azobenzene-carrying crosslinked poly(vinyl ether) and polycarbonate. Macromol Rapid Commun 26(13):1032–1036CrossRefGoogle Scholar
  221. 221.
    Kim HK, Wang XS, Fujita Y, Sudo A, Nishida H, Fujii M, Endo T (2005) A rapid photomechanical switching polymer blend system composed of azobenzene-carrying poly(vinylether) and poly(carbonate). Polymer 46(16):5879–5883CrossRefGoogle Scholar
  222. 222.
    Kim HK, Wang XS, Fujita Y, Sudo A, Nishida H, Fujii M, Endo T (2005) Reversible photo-mechanical switching behavior of azobenzene-containing semi-interpenetrating network under UV and visible light irradiation. Macromol Chem Phys 206(20):2106–2111CrossRefGoogle Scholar
  223. 223.
    Tanaka S, Kim HK, Sudo A, Nishida H, Endo T (2008) Anisotropic photomechanical response of stretched blend film made of polycaprolactone-polyvinyl ether with azobenzene group as side chain. Macromol Chem Phys 209(20):2071–2077CrossRefGoogle Scholar
  224. 224.
    Zhang C, Zhao X, Chao D, Lu X, Chen C, Wang C, Zhang W (2009) Rapid bending of a nonliquid crystal azobenzene polymer film and characteristics of surface relief grating. J Appl Polym Sci 113(2):1330–1334CrossRefGoogle Scholar
  225. 225.
    Kim HK, Shin W, Ahn TJ (2010) UV sensor based on photomechanically functional polymer-coated FBG. IEEE Photonics Technol Lett 22(19):1404–1406CrossRefGoogle Scholar
  226. 226.
    Kim KT, Moon NI, Kim HK (2010) A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate. Sens Actuators, A 160(1–2):19–21Google Scholar
  227. 227.
    Li N, Ye G, He Y, Wang X (2011) Hollow microspheres of amphiphilic azo homopolymers: self-assembly and photoinduced deformation behavior. Chem Commun 47(16):4757–4759CrossRefGoogle Scholar
  228. 228.
    Liu J, He Y, Wang X (2010) Influence of chromophoric electron-withdrawing groups on photoinduced deformation of azo polymer colloids. Polymer 51(13):2879–2886CrossRefGoogle Scholar
  229. 229.
    Liu JH, Chiu YH (2010) Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments. J Polym Sci Part A Pol Chem 48(5):1142–1148CrossRefGoogle Scholar
  230. 230.
    Liu J, He Y, Wang X (2008) Azo polymer colloidal spheres containing different amounts of functional groups and their photoinduced deformation behavior. Langmuir 24(3):678–682CrossRefGoogle Scholar
  231. 231.
    Liu J, He Y, Wang X (2009) Size-dependent light-driven effect observed for azo polymer colloidal spheres with different average diameters. Langmuir 25(10):5974–5979CrossRefGoogle Scholar
  232. 232.
    Küpfer J, Nishikawa E, Finkelmann H (1994) Densely crosslinked liquid single-crystal elastomers. Polym Adv Technol 5(2):110–115CrossRefGoogle Scholar
  233. 233.
    Wermter H, Finkelmann H (2001) Liquid crystalline elastomers as artificial muscles. e-Polymers 013:1–13Google Scholar
  234. 234.
    Gennes PGD, Hebert M, Kant R (1997) Artificial muscles based on nematic gels. Macromol Symp 113:39–49CrossRefGoogle Scholar
  235. 235.
    Ikeda T, Mamiya J, Yu YL (2007) Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed 46(4):506–528CrossRefGoogle Scholar
  236. 236.
    Elias AL, Harris KD, Bastiaansen CWM, Broer DJ, Brett MJ (2006) Photopatterned liquid crystalline polymers for microactuators. J Mater Chem 16(28):2903–2912CrossRefGoogle Scholar
  237. 237.
    Yang H, Ye G, Wang X, Keller P (2011) Micron-sized liquid crystalline elastomer actuators. Soft Matter 7(3):815–823CrossRefGoogle Scholar
  238. 238.
    Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87(1):015501CrossRefGoogle Scholar
  239. 239.
    Hogan PM, Tajbakhsh AR, Terentjev EM (2002) uv manipulation of order and macroscopic shape in nematic elastomers. Phys Rev E 65(4):041720CrossRefGoogle Scholar
  240. 240.
    Cviklinski J, Tajbakhsh AR, Terentjev EM (2002) UV isomerisation in nematic elastomers as a route to photo-mechanical transducer. Eur Phys J E 9(5):427–434CrossRefGoogle Scholar
  241. 241.
    Li MH, Keller P, Li B, Wang X, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15(7–8):569–572CrossRefGoogle Scholar
  242. 242.
    Yu Y, Nakano M, Ikeda T (2004) Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers. Pure Appl Chem 76(7–8):1467–1477CrossRefGoogle Scholar
  243. 243.
    Nakano H (2010) Direction control of photomechanical bending of a photochromic molecular fiber. J Mater Chem 20(11):2071–2074CrossRefGoogle Scholar
  244. 244.
    Yoshino T, Kondo M, Mamiya J, Kinoshita M, Yu YL, Ikeda T (2010) Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv Mater 22(12):1361–1363CrossRefGoogle Scholar
  245. 245.
    Kondo M, Yu Y, Ikeda T (2006) How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? Angew Chem Int Ed 45(9):1378–1382CrossRefGoogle Scholar
  246. 246.
    Tabiryan N, Serak S, Dai XM, Bunning T (2005) Polymer film with optically controlled form and actuation. Opt Express 13(19):7442–7448CrossRefGoogle Scholar
  247. 247.
    Van Oosten CL, Corbett D, Davies D, Warner M, Bastiaansen CWM, Broer DJ (2008) Bending dynamics and directionality reversal in liquid crystal network photoactuators. Macromolecules 41(22):8592–8596CrossRefGoogle Scholar
  248. 248.
    Priimagi A, Shimamura A, Kondo M, Hiraoka T, Kubo S, Mamiya J, Kinoshita M, Ikeda T, Shishido A (2012) Location of the azobenzene moieties within the cross-linked liquid-crystalline polymers can dictate the direction of photoinduced bending. ACS Macro Lett 1(1):96–99. doi: 10.1021/mz200056w CrossRefGoogle Scholar
  249. 249.
    Harris KD, Cuypers R, Scheibe P, van Oosten CL, Bastiaansen CWM, Lub J, Broer DJ (2005) Large amplitude light-induced motion in high elastic modulus polymer actuators. J Mater Chem 15(47):5043–5048CrossRefGoogle Scholar
  250. 250.
    Kondo M, Sugimoto M, Yamada M, Naka Y, Mamiya JI, Kinoshita M, Shishido A, Yu Y, Ikeda T (2010) Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azobenzene liquid-crystalline polymers. J Mater Chem 20(1):117–122CrossRefGoogle Scholar
  251. 251.
    Lee KM, Koerner H, Vaia RA, Bunning TJ, White TJ (2010) Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks. Macromolecules 43(19):8185–8190CrossRefGoogle Scholar
  252. 252.
    Shimamura A, Priimagi A, Mamiya J, Ikeda T, Yu Y, Barrett CJ, Shishido A (2011) Simultaneous analysis of optical and mechanical properties of cross-linked azobenzene-containing liquid-crystalline polymer films. ACS Appl Mater Interfaces 3(11):4190–4196CrossRefGoogle Scholar
  253. 253.
    Bar-Cohen Y (ed) (2004) Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, 2nd edn. SPIE Press, BellinghamGoogle Scholar
  254. 254.
    Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscles. Mater Today 10(4):30–38CrossRefGoogle Scholar
  255. 255.
    Yamada M, Kondo M, Miyasato R, Naka Y, Mamiya JI, Kinoshita M, Shishido A, Yu Y, Barrett CJ, Ikeda T (2009) Photomobile polymer materials—various three-dimensional movements. J Mater Chem 19(1):60–62CrossRefGoogle Scholar
  256. 256.
    Naka Y, Mamiya J-i, Shishido A, Washio M, Ikeda T (2011) Direct fabrication of photomobile polymer materials with an adhesive-free bilayer structure by electron-beam irradiation. J Mater Chem 21(6):1681–1683CrossRefGoogle Scholar
  257. 257.
    Yin RY, Xu WX, Kondo M, Yen CC, Mamiya J, Ikeda T, Yu YL (2009) Can sunlight drive the photoinduced bending of polymer films? J Mater Chem 19(20):3141–3143CrossRefGoogle Scholar
  258. 258.
    Cheng F, Yin R, Zhang Y, Yen CC, Yu Y (2010) Fully plastic microrobots which manipulate objects using only visible light. Soft Matter 6(15):3447–3449CrossRefGoogle Scholar
  259. 259.
    Cheng F, Zhang Y, Yin R, Yu Y (2010) Visible light induced bending and unbending behavior of crosslinked liquid-crystalline polymer films containing azotolane moieties. J Mater Chem 20(23):4888–4896CrossRefGoogle Scholar
  260. 260.
    Lee KM, Koerner H, Vaia RA, Bunning TJ, White TJ (2011) Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7(9):4318–4324CrossRefGoogle Scholar
  261. 261.
    Wu W, Yao L, Yang T, Yin R, Li F, Yu Y (2011) NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J Am Chem Soc 133(40):15810–15813CrossRefGoogle Scholar
  262. 262.
    Chen M, Xing X, Liu Z, Zhu Y, Liu H, Yu Y, Cheng F (2010) Photodeformable polymer material: towards light-driven micropump applications. Appl Phys A Mater Sci Proc 100(1):39–43CrossRefGoogle Scholar
  263. 263.
    Liu H, Zhu Y, Liu Z, Chen M (2010) Research of photo-induced bending thin film microactuators. Yadian Yu Shengguang/Piezoelectrics and Acoustooptics 32(3):417–419Google Scholar
  264. 264.
    van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8(8):677–682CrossRefGoogle Scholar
  265. 265.
    Palffy-Muhoray P (2009) Liquid crystals: printed actuators in a flap. Nat Mater 8(8):614–615CrossRefGoogle Scholar
  266. 266.
    Toda F (ed) (2002) Organic solid state reactions. Kluwer, DrodrechtGoogle Scholar
  267. 267.
    Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100(3):1025–1074CrossRefGoogle Scholar
  268. 268.
    Kaupp G (1992) Photodimerization of cinnamic acid in the solid state: new insights on application of atomic force microscopy. Angew Chem Int Ed 31(5):592–595CrossRefGoogle Scholar
  269. 269.
    Kaupp G (1992) Photodimerization of anthracenes in the solid state: new results from atomic force microscopy. Angew Chem Int Ed 31(5):595–598CrossRefGoogle Scholar
  270. 270.
    Irie M, Kobatake S, Horichi M (2001) Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291(5509):1769–1772CrossRefGoogle Scholar
  271. 271.
    Koshima H, Ide Y, Ojima N (2008) Surface morphology changes of a salt crystal of 4-(2,5-diisopropylbenzoyl)benzoic acid with (S)-phenylethylamine via single-crystal-to-single-crystal photocyclization. Cryst Growth Des 8(7):2058–2060CrossRefGoogle Scholar
  272. 272.
    Kobatake S, Takami S, Muto H, Ishikawa T, Irie M (2007) Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446(7137):778–781CrossRefGoogle Scholar
  273. 273.
    Morimoto M, Irie M (2010) A diarylethene cocrystal that converts light into mechanical work. J Am Chem Soc 132(40):14172–14178CrossRefGoogle Scholar
  274. 274.
    Nakayama K, Jiang L, Iyoda T, Hashimoto K, Fujishima A (1997) Photo-induced structural transformation on the surface of azobenzene crystals. Jpn J Appl Phys 36:3898–3902CrossRefGoogle Scholar
  275. 275.
    Ichimura K (2009) Reversible photoisomerisability and particle size changes of mill-dispersed azobenzene crystals in water. Chem Commun 12:1496–1498CrossRefGoogle Scholar
  276. 276.
    Ichimura K (2010) Photoisomerisation behaviour of azobenzene crystals hybridised with silica nanoparticles by dry grinding. Chem Commun 46(19):3295–3297CrossRefGoogle Scholar
  277. 277.
    Nakano H, Tanino T, Shirota Y (2005) Surface relief grating formation on a single crystal of 4-(dimethylamino)azobenzene. Appl Phys Lett 87(6):061910CrossRefGoogle Scholar
  278. 278.
    Nakano H (2008) Photoinduced surface relief grating formation on a (100) surface of a single crystal of 4-(dimethylamino)azobenzene. J Phys Chem C 112(41):16042–16045CrossRefGoogle Scholar
  279. 279.
    Nakano H (2010) Photoinduced surface relief grating formation for a single crystal of 4-aminoazobenzene. Int J Mol Sci 11(4):1311–1320CrossRefGoogle Scholar
  280. 280.
    Nakano H, Seki S, Kageyama H (2010) Photoinduced vitrification near the surfaces of single crystals of azobenzene-based molecular materials with glass-forming ability. Phys Chem Chem Phys 12(28):7772–7774CrossRefGoogle Scholar
  281. 281.
    Koshima H, Ojima N, Uchimoto H (2009) Mechanical motion of azobenzene crystals upon photoirradiation. J Am Chem Soc 131(20):6890–6891CrossRefGoogle Scholar
  282. 282.
    Milam K, O’Malley G, Kim N, Golovaty D, Kyu T (2010) Swimming photochromic azobenzene single crystals in triacrylate solution. J Phys Chem B 114(23):7791–7796CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Zahid Mahimwalla
    • 1
  • Kevin G. Yager
    • 2
  • Jun-ichi Mamiya
    • 3
  • Atsushi Shishido
    • 3
  • Arri Priimagi
    • 3
    • 4
  • Christopher J. Barrett
    • 1
    Email author
  1. 1.Department of ChemistryMcGill UniversityMontrealCanada
  2. 2.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA
  3. 3.Chemical Resources LaboratoryTokyo Institute of TechnologyYokohamaJapan
  4. 4.Department of Applied PhysicsAalto UniversityAaltoFinland

Personalised recommendations