Polymer Bulletin

, Volume 69, Issue 9, pp 1023–1040 | Cite as

Optically active thermosensitive amphiphilic polymer brushes based on helical polyacetylene: preparation through “click” onto grafting method and self-assembly

Original Paper

Abstract

Optically active, thermosensitive, and amphiphilic polymer brushes, which consist of helical poly(N-propargylamide) main chains and thermosensitive poly(N-isopropylacrylamide) (PNIPAm) side chains, were prepared via a novel methodology combining catalytic polymerization, atom transfer radical polymerization (ATRP), and click chemistry. Helical poly(N-propargylamide) bearing α-bromoisobutyryl pendent groups was synthesized via catalytic polymerization, followed by substituting the –Br moieties with azido groups. Then, alkynyl terminated PNIPAm formed via ATRP was successfully grafted onto the azido functionalized helical polymer backbones via click chemistry, providing the expected polymer brushes. GPC, FT-IR, and 1H-NMR measurements indicated the successful synthesis of the novel amphiphilic polymer brushes. UV–vis and CD spectra evidently demonstrated the helical structures of the polymer backbones and the considerable optical activity of the final brushes. The polymer brushes self-assembled in aqueous solution forming core/shell structured nanoparticles, which were comprised of optically active cores (helical polyacetylenes) and thermosensitive shells (PNIPAm).

Keywords

Polymer brush Grafting onto Click chemistry Optically active helical polymer Self-assembly Core/shell nanoparticle 

References

  1. 1.
    Hadjichristidis N, Iatroua H, Pitsikalisa M, Maysb J (2006) Macromolecular architectures by living and controlling/living polymerizations. Prog Polym Sci 31:1068–1132CrossRefGoogle Scholar
  2. 2.
    Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A (2005) Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci 30:725–782CrossRefGoogle Scholar
  3. 3.
    Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33:759–785CrossRefGoogle Scholar
  4. 4.
    Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers Techniques, factors and applications. Prog Polym Sci 29:767–814CrossRefGoogle Scholar
  5. 5.
    Xu Y, Bolisetty S, Ballauff M, Müller AHE (2009) Switching the morphologies of cylindrical polycation brushes by ionic and supramolecular inclusion complexes. J Am Chem Soc 131:1640–1641CrossRefGoogle Scholar
  6. 6.
    Li C, Gunari N, Fischer K, Janshoff A, Schmidt M (2004) New perspectives for the design of molecular actuators: thermally induced collapse of single macromolecules from cylindrical brushes to spheres. Angew Chem Int Ed 43:1101–1104CrossRefGoogle Scholar
  7. 7.
    Sheiko SS, Möller M (2001) Visualization of macromolecules—a first step to manipulation and controlled response. Chem Rev 101:4099–4123CrossRefGoogle Scholar
  8. 8.
    Tsukahara Y, Namba S, Iwasa J, Nakano Y, Kaeriyama K, Takahashi M (2001) Bulk properties of poly(macromonomer)s of increased backbone and branch lengths. Macromolecules 34:2624–2629CrossRefGoogle Scholar
  9. 9.
    Sheiko SS, Prokhorova SA, Beers KL, Matyjaszewski K, Potemkin II, Khokhlov AR, Möller M (2001) Single molecule rod-globule phase transition for brush molecules at a flat interface. Macromolecules 34:8354–8360CrossRefGoogle Scholar
  10. 10.
    Hadjichristidis N, Pitsikalis M, Iatrou H, Pispas S (2003) The strength of the macromonomer strategy for complex macromolecular architecture: molecular characterization, properties and Applications of polymacromonomers. Macromol Rapid Commun 24:979–1013CrossRefGoogle Scholar
  11. 11.
    Neugebauer D, Zhang Y, Pakula T, Sheiko SS, Matyjaszewski K (2003) Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers. Macromolecules 36:6746–6755CrossRefGoogle Scholar
  12. 12.
    Fu GD, Phua SJ, Kang ET, Neoh KG (2005) Tadpole-shaped amphiphilic block-graft copolymers prepared via consecutive atom transfer radical polymerization. Macromolecules 38:2612–2619CrossRefGoogle Scholar
  13. 13.
    Börner HG, Beers K, Matyjaszewski K, Sheiko SS, Möller M (2001) Synthesis of molecular brushes with block copolymer side chains using atom transfer radical polymerization. Macromolecules 34:4375–4383CrossRefGoogle Scholar
  14. 14.
    Gao H, Matyjaszewski K (2007) Synthesis of molecular brushes by “grafting onto” method: combination of ATRP and click reactions. J Am Chem Soc 129:6633–6639CrossRefGoogle Scholar
  15. 15.
    Ranjan R, Brittain WJ (2007) Combination of living radical polymerization and click chemistry for surface modification. Macromolecules 40:6217–6223CrossRefGoogle Scholar
  16. 16.
    Cheng C, Khoshdel E, Wooley KL (2006) Facile one-pot synthesis of brush polymers through Tandem catalysis using Grubbs’ catalyst for both ring-opening metathesis and atom transfer radical polymerizations. Nano Lett 6:1741–1746CrossRefGoogle Scholar
  17. 17.
    Dag A, Sahin H, Durmaz H, Hizal G, Tunca U (2011) Block-brush copolymer via ROMP and sequential double click reaction strategy. J Polym Sci, Part A: Polym Chem 49:886–892CrossRefGoogle Scholar
  18. 18.
    Cheng C, Qi K, Khoshdel E, Wooley KL (2006) Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures. J Am Chem Soc 128:6808–6809CrossRefGoogle Scholar
  19. 19.
    Gu L, Shen Z, Zhang S, Lu GL, Zhang XH, Huang XY (2007) Novel amphiphilic centipede-like copolymer bearing polyacrylate backbone and poly(ethylene glycol) and polystyrene side chains. Macromolecules 40:4486–4493CrossRefGoogle Scholar
  20. 20.
    Cheng ZP, Zhu XL, Fu GD, Kang ET, Neoh KG (2005) Dual-brush-type amphiphilic triblock copolymer with intact epoxide functional groups from consecutive RAFT polymerizations and ATRP. Macromolecules 38(7):187–7192Google Scholar
  21. 21.
    Zhang W, Shiotsuki M, Masuda T (2007) A helical poly(macromonomer) consisting of a polyacetylene main chain and polystyrene side chains. Macromol Rapid Commun 28:1115–1121CrossRefGoogle Scholar
  22. 22.
    Maeda K, Kamiya N, Yashima E (2004) Poly(phenylacetylene)s bearing a peptide pendant: helical conformational changes of the polymer backbone stimulated by the pendant conformational change. Chem Eur J 10:4000–4010CrossRefGoogle Scholar
  23. 23.
    Percec V, Aqad E, Peterca M, Rudick JG, Lemon L, Ronda JC, De BB, Heiney PA, Meijer EW (2006) Steric communication of chiral information observed in dendronized polyacetylenes. J Am Chem Soc 128:16365–16372CrossRefGoogle Scholar
  24. 24.
    Bakandritsos A, Bouropoulos N, Zboril R, Iliopoulos K, Boukos N, Chatzikyriakos G, Couris S (2008) Optically active spherical polyelectrolyte brushes with a nanocrystalline magnetic core. Adv Funct Mater 18:1694–1706CrossRefGoogle Scholar
  25. 25.
    Ding L, Huang YY, Zhang YY, Deng JP, Yang WT (2011) Optically active amphiphilic polymer brushes based on helical polyacetylenes: preparation and self-assembly into core/shell particles. Macromolecules 44:736–743CrossRefGoogle Scholar
  26. 26.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRefGoogle Scholar
  27. 27.
    Lutz JF (2007) 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025CrossRefGoogle Scholar
  28. 28.
    Lodge TP (2009) A virtual issue of Macromolecules: “Click chemistry in macromolecular science”. Macromolecules 42:3827–3829CrossRefGoogle Scholar
  29. 29.
    Bertoldo M, Zampano G, Terra F, Villari V, Castelvetro V (2011) Amphiphilic amylose-g-poly(meth)acrylate copolymers through “Click” onto grafting method. Biomacromolecules 12:388–398CrossRefGoogle Scholar
  30. 30.
    Yin J, Ge ZS, Liu H, Liu SY (2009) Synthesis of amphiphilic copolymer brushes possessing alternating poly(methyl methacrylate) and poly(N-isopropylacrylamide) grafts via a combination of ATRP and click chemistry. J Polym Sci, Part A: Polym Chem 47:2608–2619CrossRefGoogle Scholar
  31. 31.
    Bao HQ, Li L, Gan HL, Ping Y, Li J, Ravi P (2010) Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules 43:5679–5687CrossRefGoogle Scholar
  32. 32.
    Xu N, Wang R, Du FS, Li ZC (2009) Synthesis of amphiphilic biodegradable glycocopolymers based on poly(ε-caprolactone) by ring-opening polymerization and click chemistry. J Polym Sci, Part A: Polym Chem 47:3583–3594CrossRefGoogle Scholar
  33. 33.
    Yuan YY, Du Q, Wang YC, Wang J (2010) One-pot synthesis of amphiphilic centipede-like brush copolymers via combination of ring-opening polymerization and “click” chemistry. Macromolecules 43:1739–1746CrossRefGoogle Scholar
  34. 34.
    Han DH, Tong X, Zhao Y (2011) One-pot synthesis of brush diblock copolymers through simultaneous ATRP and clicking coupling. Macromolecules 44:5531–5536CrossRefGoogle Scholar
  35. 35.
    Sun JP, Hu JW, Liu GJ, Xiao DS, He GP, Lu RF (2011) Efficient synthesis of well-defined amphiphilic cylindrical brushes polymer with high grafting density: interfacial “click” chemistry approach. J Polym Sci, Part A: Polym Chem 49:1282–1288CrossRefGoogle Scholar
  36. 36.
    Fan XS, Wang GW, Huang JL (2011) Synthesis of macrocyclic molecular brushes with amphiphilic block copolymers as side chains. J Polym Sci, Part A: Polym Chem 49:1361–1367CrossRefGoogle Scholar
  37. 37.
    Engler AC, Lee H, Hammond PT (2009) Highly efficient “grafting onto” a polypeptide backbone using click chemistry. Angew Chem Int Ed 48:9334–9338CrossRefGoogle Scholar
  38. 38.
    Ostaci RV, Damiron D, Grohens Y, Léger L, Drockenmuller E (2010) Click chemistry grafting of Poly(ethylene glycol) brushes to alkyne-functionalized pseudobrushes. Langmuir 26:1304–1310CrossRefGoogle Scholar
  39. 39.
    Gao C, Zheng X (2009) Facile synthesis and self-assembly of multihetero-arm hyperbranched polymer brushes. Soft Matter 5:4788–4796CrossRefGoogle Scholar
  40. 40.
    Ding L, Jiao XF, Deng JP, Zhao WG, Yang WT (2009) Catalytic polymerizations of hydrophobic, substituted, acetylene monomers in an aqueous medium by using a monomer/hydroxypropyl-β-cyclodextrin inclusion complex. Macromol Rapid Commun 30:120–125CrossRefGoogle Scholar
  41. 41.
    Zhang ZG, Deng JP, Zhao WG, Wang JM, Yang WT (2007) Synthesis of optically active poly(N-propargylsulfamides) with helical conformation. J Polym Sci, Part A: Polym Chem 45:500–508CrossRefGoogle Scholar
  42. 42.
    Deng JP, Luo XF, Zhao WG, Yang WT (2008) A novel type of optically active helical polymers: synthesis and characterization of poly(N-propargylureas). J Polym Sci, Part A: Polym Chem 46:4112–4121CrossRefGoogle Scholar
  43. 43.
    Luo XF, Deng JP, Yang WT (2011) Helix-sense-selective polymerizations of achiral substituted acetylenes in chiral micelles. Angew Chem Int Ed 50:4909–4912CrossRefGoogle Scholar
  44. 44.
    Luo XF, Li L, Deng JP, Guo TT, Yang WT (2010) Asymmetric catalytic emulsion polymerization in chiral micelles. Chem Commun 46:2745–2747CrossRefGoogle Scholar
  45. 45.
    Deng JP, Chen B, Luo XF, Yang WT (2009) Synthesis of nano-latex particles of optically active helical substituted polyacetylenes via catalytic microemulsion polymerization in aqueous systems. Macromolecules 42:933–938CrossRefGoogle Scholar
  46. 46.
    Chen B, Deng JP, Liu XQ, Yang WT (2010) Novel category of optically active core/shell nanoparticles: the core consisting of a helical-substituted polyacetylene and the shell consisting of a vinyl polymer. Macromolecules 43:3177–3182CrossRefGoogle Scholar
  47. 47.
    Luo XF, Liu XQ, Chen B, Deng JP, Yang WT (2010) Optically active composite nanoparticles with chemical bonds between core and shell. J Polym Sci, Part A: Polym Chem 48:5611–5617CrossRefGoogle Scholar
  48. 48.
    Chen B, Deng JP, Yang WT (2011) Hollow two-layered chiral nanoparticles consisting of optically active helical polymer/silica: preparation and application for enantioselective crystallization. Adv Funct Mater 21:2345–2350CrossRefGoogle Scholar
  49. 49.
    Chen B, Deng JP, Tong LY, Yang WT (2010) Optically active helical polyacetylene@silica hybrid organic-inorganic core/shell nanoparticles: preparation and application for enantioselective crystallization. Macromolecules 43:9613–9619CrossRefGoogle Scholar
  50. 50.
    Zhou K, Tong LY, Deng JP, Yang WT (2010) Hollow polymeric microspheres grafted with optically active helical polymer chains: preparation and their chiral recognition ability. J Mater Chem 20:781–789CrossRefGoogle Scholar
  51. 51.
    Tabei J, Nomura R, Masuda T (2002) Conformational study of poly(N-propargylamides) having bulky pendant groups. Macromolecules 35:5405–5409CrossRefGoogle Scholar
  52. 52.
    Schrock RR, Osborn JA (1970) π-Bonded complexes of the tetraphenylborate ion with Rhodium(I) and Iridium(I). Inorg Chem 9:2339–2343CrossRefGoogle Scholar
  53. 53.
    Lian XM, Wu DX, Song XH, Zhao HY (2010) Synthesis and self-assembly of amphiphilic asymmetric macromolecular brushes. Macromolecules 43:7434–7445CrossRefGoogle Scholar
  54. 54.
    Fujiki M (2001) Optically active polysilylenes: state-of-the-art chiroptical polymers. Macromol Rapid Commun 22:539–563CrossRefGoogle Scholar
  55. 55.
    Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature 374:240–242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations