Polymer Bulletin

, Volume 68, Issue 8, pp 2145–2174 | Cite as

The influence of additive property on performance of organic bulk heterojunction solar cells

Original Paper

Abstract

The performance of bulk heterojunction organic solar cells based upon blends of donor and acceptor materials has been shown to be highly dependent on the microstructure and photoelectric properties of active layer. Recently, various methods, such as post-annealing, microwave annealing and control in the film-forming rate, and so on, have been used to modify the morphology to achieve high device performance. Among these methods, adding additives is a simple and promising approach, which can not only control the morphology but also improve the photon absorption or energy-level distribution of the active layer. In this review, we will introduce the additives that used widely in recent from following aspects: species, mechanism, and performance. First, the additive species and its selection principle according to special donor and acceptor system will be concluded. Then, the mechanisms of improved morphology and photoelectric properties by adding different kinds of additives will be illustrated in brief. At last, we will discuss the influences of additives on device performance.

Keywords

Solar cells Additive Polythiophene Crystallinity Phase separation 

References

  1. 1.
    Xue JG (2010) Perspectives on organic photovoltaics. Polym Rev 50:411–419CrossRefGoogle Scholar
  2. 2.
    Chen FC, Tseng HC, Ko CJ (2008) Solvent mixtures for improving device efficiency of polymer photovoltaic devices. Appl Phys Lett 92:103316CrossRefGoogle Scholar
  3. 3.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945CrossRefGoogle Scholar
  4. 4.
    Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338CrossRefGoogle Scholar
  5. 5.
    Beaupre S, Breton AC, Dumas J, Leclerc M (2009) Multicolored electrochromic cells based on poly(2,7-carbazole) derivatives for adaptive camouflage. Chem Mater 21:1504–1513CrossRefGoogle Scholar
  6. 6.
    Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649–653CrossRefGoogle Scholar
  7. 7.
    Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP (2010) For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138CrossRefGoogle Scholar
  8. 8.
    Chu T-Y, Lu JP, Beaupré S, Zhang YG, Pouliot JR, Wakim S, Zhou JY, Leclerc M, Li Z, Ding JF, Tao Y (2011) Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:20,30-d]silole copolymer with a power conversion efficiency of 7.3%. J Am Chem Soc 133:4250–4253CrossRefGoogle Scholar
  9. 9.
    Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185CrossRefGoogle Scholar
  10. 10.
    Marks RN, Halls JJM, Bradley DDC, Friend RH, Holmes AB (1994) The photovoltaic response in poly(p-phenylene vinylene) thin-film devices. J Phys: Condens Matter 6:1379–1394Google Scholar
  11. 11.
    Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533–4542CrossRefGoogle Scholar
  12. 12.
    Gregg BA (2003) Excitonic solar cells. J Phys Chem B 107:4688–4698CrossRefGoogle Scholar
  13. 13.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93:3693–3723CrossRefGoogle Scholar
  14. 14.
    Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB (1996) Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell. Appl Phys Lett 68:3120–3122CrossRefGoogle Scholar
  15. 15.
    Theander M, Yartsev A, Zigmantas D, Sundstrom V, Mammo W, Andersson MR, Inganas O (2000) Photoluminescence quenching at a polythiophene/C-60 heterojunction. Phys Rev B 61:12957–12963CrossRefGoogle Scholar
  16. 16.
    Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, Wudl F (1993) Semiconducting polymer-buckminsterfullerene heterojunctions-diodes, photodiodes, and photovoltaic cells. Appl Phys Lett 62:585–587CrossRefGoogle Scholar
  17. 17.
    Yu G, Heeger AJ (1995) Charge separation and photovoltaic conversion in polymer composites with internal donor–acceptor heterojunctions. J Appl Phys 78:4510–4515CrossRefGoogle Scholar
  18. 18.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500CrossRefGoogle Scholar
  19. 19.
    Hill IG, Kahn A, Soos ZG, Pascal RA (2000) Charge-separation energy in films of pi-conjugated organic molecules. Chem Phys Lett 327:181–188CrossRefGoogle Scholar
  20. 20.
    Barth S, Bassler H (1997) Intrinsic photoconduction in PPV-type conjugated polymers. Phys Rev Lett 79:4445–4448CrossRefGoogle Scholar
  21. 21.
    Forrest SR (2005) The limits to organic photovoltaic cell efficiency. MRS Bull 30:28–32CrossRefGoogle Scholar
  22. 22.
    Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRefGoogle Scholar
  23. 23.
    Yang XN, van Duren JKJ, Janssen RAJ, Michels MAJ, Loos J (2004) Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37:2151–2158CrossRefGoogle Scholar
  24. 24.
    Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Xie ZY, Qu Y, Geng YH, Wang LX (2007) Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene): methanofullerene bulk-heterojunction photovoltaic cells. Appl Phys Lett 90:043504CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Guo XY, Xie ZY, Qu Y, Geng YH, Wang LX (2009) Solvent vapor-Induced self assembly and its influence on optoelectronic conversion of poly(3-hexylthiophene): methanofullerene bulk heterojunction photovoltaic cells. J Appl Polym Sci 111:1799–1804CrossRefGoogle Scholar
  27. 27.
    Ko CJ, Lin YK, Chen FC (2007) Microwave annealing of polymer photovoltaic devices. Adv Mater 19:3520–3523CrossRefGoogle Scholar
  28. 28.
    Yang XN, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583CrossRefGoogle Scholar
  29. 29.
    Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 15:1317–1323CrossRefGoogle Scholar
  30. 30.
    Erb T, Zhokhavets U, Gobsch G, Raleva S, Stuhn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater 15:1193–1196CrossRefGoogle Scholar
  31. 31.
    Mihailetchi VD, Xie HX, de Boer B, Koster LJA, Blom PWM (2006) Charge transport and photocurrent generation in poly(3-hexylthiophene): methanofullerene bulk-heterojunction solar cells. Adv Funct Mater 16:699–708CrossRefGoogle Scholar
  32. 32.
    Brabec CJ, Heeney M, McCulloch I, Nelson J (2011) Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem Soc Rev 40:1185–1199CrossRefGoogle Scholar
  33. 33.
    Berson S, De Bettignies R, Bailly S, Guillerez S (2007) Poly (3-hexylthiophene) fibers for photovoltaic applications. Adv Funct Mater 17:1377–1384CrossRefGoogle Scholar
  34. 34.
    Chang YM, Wang L (2008) Efficient poly(3-hexylthiophene)-based bulk heterojunction solar cells fabricated by an annealing-free approach. J Phys Chem C 112:17716–17720CrossRefGoogle Scholar
  35. 35.
    Koppe M, Brabec CJ, Heiml S, Schausberger A, Duffy W, Heeney M, McCulloch I (2009) Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules 42:4661–4666CrossRefGoogle Scholar
  36. 36.
    Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C-60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87:203113CrossRefGoogle Scholar
  37. 37.
    Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ (2008) Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc 130:3619–3623CrossRefGoogle Scholar
  38. 38.
    Peet J, Soci C, Coffin RC, Nguyen TQ, Mikhailovsky A, Moses D, Bazan GC (2006) Method for increasing the photoconductive response in conjugated polymer/fullerene composites. Appl Phys Lett 89:252105CrossRefGoogle Scholar
  39. 39.
    Yao Y, Hou JH, Xu Z, Li G, Yang Y (2008) Effect of solvent mixture on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18:1783–1789CrossRefGoogle Scholar
  40. 40.
    Liu JG, Shao SY, Wang HF, Zhao K, Xue LJ, Gao X, Xie ZY, Han YC (2010) The mechanisms for introduction of n-dodecylthiol to modify the P3HT/PCBM morphology. Org Electron 11:775–783CrossRefGoogle Scholar
  41. 41.
    Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500CrossRefGoogle Scholar
  42. 42.
    Su M-S, Kuo C-Y, Yuan M-C, Jeng US, Su C-J, Wei K-H (2011) Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives. Adv Mater 23:3315–3319CrossRefGoogle Scholar
  43. 43.
    Yang X, Loos J (2007) Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40:1353–1362CrossRefGoogle Scholar
  44. 44.
    Bavel SSv, Sourty E, With Gd (2009) Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. Nano Lett 9:507–513CrossRefGoogle Scholar
  45. 45.
    Salim T, Wong LH, Brauer B, Kukreja R, Foo YL, Bao ZN, Lam YM (2011) Solvent additives and their effects on blend morphologies of bulk heterojunctions. J Mater Chem 21:242–250CrossRefGoogle Scholar
  46. 46.
    Rughooputh S, Hotta S, Heeger AJ, Wudl F (1987) Chromism of soluble polythienylenes. J Polym Sci B 25:1071–1078CrossRefGoogle Scholar
  47. 47.
    Colby RH, Rubinstein M, Viovy JL (1992) Chain entanglement in polymer melts and solutions. Macromolecules 25:996–998CrossRefGoogle Scholar
  48. 48.
    Jeong S, Woo SH, Lyu HK, Han YS (2011) Effects of a perfluorinated compound as an additive on the power conversion efficiencies of polymer solar cells. Sol Energy Mater Sol Cells 95:1908–1914CrossRefGoogle Scholar
  49. 49.
    Barrau S, Zhang F, Herland A, Mammo W, Andersson MR, Inganas O (2008) Integration of amyloid nanowires in organic solar cells. Appl Phys Lett 93:023307CrossRefGoogle Scholar
  50. 50.
    Yin C, Shen XY (2005) Thermal property of super bright polyester chips. J Textile Res 26:86–87Google Scholar
  51. 51.
    Telkes M (1952) Nucleation of supersaturated inorganic salt solutions. Ind Eng Chem 44:1308–1310CrossRefGoogle Scholar
  52. 52.
    Bechara R, Leclerc N, Léve Que P, Richard F, Heiser T, Hadziioannou G (2008) Efficiency enhancement of polymer photovoltaic devices using thieno-thiophene based copolymers as nucleating agents for polythiophene crystallization. Appl Phys Lett 93:013306CrossRefGoogle Scholar
  53. 53.
    Kim JY, Frisbie D (2008) Correlation of phase behavior and charge transport in conjugated polymer/fullerene blends. J Phys Chem C 112:17726–17736CrossRefGoogle Scholar
  54. 54.
    Kim CS, Tinker LL, DiSalle BF, Gomez ED, Lee S, Bernhard S, Loo YL (2009) Altering the thermodynamics of phase separation in inverted bulk-heterojunction organic solar cells. Adv Mater 21:3110–3115CrossRefGoogle Scholar
  55. 55.
    Lim B, Jo J, Na SI, Kim J, Kim SS, Kim DY (2010) A morphology controller for high-efficiency bulk-heterojunction polymer solar cells. J Mater Chem 20:10919–10923CrossRefGoogle Scholar
  56. 56.
    Peumans P, Uchida S, Forrest SR (2003) Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425:158–162CrossRefGoogle Scholar
  57. 57.
    Zen A, Saphiannikova M, Neher D, Grenzer J, Grigorian S, Pietsch U, Asawapirom U, Janietz S, Scherf U, Lieberwirth I, Wegner G (2006) Effect of molecular weight on the structure and crystallinity of poly(3-hexylthiophene). Macromolecules 39:2162–2171CrossRefGoogle Scholar
  58. 58.
    Kim JB, Allen K, Oh SJ, Lee S, Toney MF, Kim YS, Kagan CR, Nuckolls C, Loo YL (2010) Small-molecule thiophene-C-60 dyads as compatibilizers in inverted polymer solar cells. Chem Mater 22:5762–5773CrossRefGoogle Scholar
  59. 59.
    Zhang QL, Cirpan A, Russell TP, Emrick T (2009) Donor–acceptor poly(thiophene-block-perylene diimide) copolymers: synthesis and solar cell fabrication. Macromolecules 42:1079–1082CrossRefGoogle Scholar
  60. 60.
    Tao Y, McCulloch B, Kim S, Segalman RA (2009) The relationship between morphology and performance of donor–acceptor rod–coil block copolymer solar cells. Soft Matter 5:4219–4230CrossRefGoogle Scholar
  61. 61.
    Sivula K, Ball ZT, Watanabe N, Frechet JMJ (2006) Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene: fullerene solar cells. Adv Mater 18:206–210CrossRefGoogle Scholar
  62. 62.
    Lindner SM, Thelakkat M (2004) Nanostructures of n-type organic semiconductor in a p-type matrix via self-assembly of block copolymers. Macromolecules 37:8832–8835CrossRefGoogle Scholar
  63. 63.
    van der Veen MH, de Boer B, Stalmach U, van de wetering KI, Hadziioannou G (2004) Donor–acceptor diblock copolymers based on PPV and C-60: synthesis, thermal properties, and morphology. Macromolecules 37:3673–3684CrossRefGoogle Scholar
  64. 64.
    Zhu Z, Waller D, Gaudiana R, Morana M, Muhlbacher D, Scharber M, Brabec C (2007) Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules 40:1981–1986CrossRefGoogle Scholar
  65. 65.
    Blouin N, Michaud A, Leclerc M (2007) A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv Mater 19:2295–2300CrossRefGoogle Scholar
  66. 66.
    Kooistra FB, Knol J, Kastenberg F, Popescu LM, Verhees WJH, Kroon JM, Hummelen JC (2007) Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org Lett 9:551–554CrossRefGoogle Scholar
  67. 67.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225CrossRefGoogle Scholar
  68. 68.
    He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater. doi: 10.1002/adma.201103006
  69. 69.
    Sharma SS, Sharma GD, Mikroyannidis JA (2011) Improved power conversion efficiency of bulk heterojunction poly(3-hexylthiophene):PCBM photovoltaic devices using small molecule additive. Sol Energy Mater Sol Cells 95:1219–1223CrossRefGoogle Scholar
  70. 70.
    Peet J, Tamayo AB, Dang XD, Seo JH, Nguyena TQ (2008) Small molecule sensitizers for near-infrared absorption in polymer bulk heterojunction solar cells. Appl Phys Lett 93:163306CrossRefGoogle Scholar
  71. 71.
    Xu Z-X, Roy VAL, Low K-H, Che C-M (2011) Bulk heterojunction photovoltaic cells based on tetra-methyl substituted copper(ii) phthalocyanine:P3HT:PCBM composite. Chem Commun 47:9654–9656CrossRefGoogle Scholar
  72. 72.
    Mihailetchi VD, van Duren JKJ, Blom PWM, Hummelen JC, Janssen RAJ, Kroon JM, Rispens MT, Verhees WJH, Wienk MM (2003) Electron transport in a methanofullerene. Adv Funct Mater 13:43–46CrossRefGoogle Scholar
  73. 73.
    He Y, Chen H-Y, Hou J, Li Y (2010) Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382CrossRefGoogle Scholar
  74. 74.
    Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend RH, MacKenzie JD (2001) Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 293:1119–1122CrossRefGoogle Scholar
  75. 75.
    Anthony JE (2011) Nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem Mater 23:583–590CrossRefGoogle Scholar
  76. 76.
    Hesse HC, Weickert J, Al-Hussein M, Dössel L, Feng X, Müllen K, Schmidt-Mende L (2010) Discotic materials for organic solar cells: effects of chemical structure on assembly and performance. Sol Energy Mater Sol Cells 94:560–567CrossRefGoogle Scholar
  77. 77.
    Hesse HC, Weickert J, Hundschell C, Feng X, Mu¨llen K, Nickel B, Mozer AJ, Schmidt-Mende L (2011) Perylene sensitization of fullerenes for improved performance in organic photovoltaics. Adv Mater. doi:10.1002/aenm.201100211
  78. 78.
    Honda S, Nogami T, Ohkita H, Benten H, Ito S (2009) Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. ACS Appl Mater Interfaces 1:804–810CrossRefGoogle Scholar
  79. 79.
    Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ (2011) Enhancement of donor–acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed 50:5519–5523CrossRefGoogle Scholar
  80. 80.
    Konda RB, Mundle R, Mustafa H, Bamiduro O, Pradhan AK, Roy UN, Cui Y, Burger A (2007) Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl Phys Lett 91:191111CrossRefGoogle Scholar
  81. 81.
    Koster LJA, Mihailetchi VD, Blom PWM (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 88:093511CrossRefGoogle Scholar
  82. 82.
    Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CL (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv Mater 18:789–794CrossRefGoogle Scholar
  83. 83.
    Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Durocher G, Tao Y, Leclerc M (2008) Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J Am Chem Soc 130:732–742CrossRefGoogle Scholar
  84. 84.
    Jeong S, Kwon Y, Choi BD, Ade H, Han YS (2010) Improved efficiency of bulk heterojunction poly(3-hexylthiophene):[6,6]-phenyl-C-61-butyric acid methyl ester photovoltaic devices using discotic liquid crystal additives. Appl Phys Lett 96:183305CrossRefGoogle Scholar
  85. 85.
    Jeong S, Kwon Y, Choi BD, Kwak G, Han YS (2010) Effects of nematic liquid crystal additives on the performance of polymer solar cells. Macromol Chem Phys 211:2474–2479CrossRefGoogle Scholar
  86. 86.
    Canli NY, Gunes S, Pivrikas A, Fuchsbauer A, Sinwel D, Sariciftci NS, Yasa O, Bilgin-Eran B (2010) Chiral (S)-5-octyloxy-2-[{4-(2-methylbuthoxy)-phenylimino}-methyl]-phenol liquid crystalline compound as additive into polymer solar cells. Sol Energy Mater Sol Cells 94:1089–1099CrossRefGoogle Scholar
  87. 87.
    Jeong S, Han YS, Kwon Y, Choi MS, Cho G, Kim KS, Kim Y (2010) Effects of n-type perylene derivative as an additive on the power conversion efficiencies of polymer solar cells. Synth Met 160:2109–2115CrossRefGoogle Scholar
  88. 88.
    van de Craats AM, Warman JM, Fechtenkotter A, Brand JD, Harbison MA, Mullen K (1999) Record charge carrier mobility in a room-temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv Mater 11:1469–1472CrossRefGoogle Scholar
  89. 89.
    Wang WL, Wu HB, Yang CY, Luo C, Zhang Y, Chen JW, Cao Y (2007) High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C-61-butyric acid methyl ester processed with oleic acid surfactant. Appl Phys Lett 90:183512CrossRefGoogle Scholar
  90. 90.
    Kircher T, Löhmannsröben HG (1999) Photoinduced charge recombination reactions of a perylene dye in acetonitrile. PCCP 1:3987–3992CrossRefGoogle Scholar
  91. 91.
    Stenzel O, Lebedev AN, Schreiber M, Zahn DRT (2000) Simulation of linear optical losses of absorbing heterogeneous thin solid films. Thin Solid Films 372:200–208CrossRefGoogle Scholar
  92. 92.
    Soon YW, Clarke TM, Zhang W, Agostinelli T, Kirkpatrick J, Dyer-Smith C, McCulloch I, Nelson J, Durrant JR (2011) Energy versus electron transfer in organic solar cells: a comparison of the photophysics of two indenofluorene:fullerene blend films. Chem Sci 2:1111–1120CrossRefGoogle Scholar
  93. 93.
    Di Nuzzo D, Aguirre A, Shahid M, Gevaerts VS, Meskers SCJ, Janssen RAJ (2010) Improved film morphology reduces charge carrier recombination into the triplet excited state in a small bandgap polymer-fullerene photovoltaic cell. Adv Mater 22:4321–4324CrossRefGoogle Scholar
  94. 94.
    Yang C, Lee JK, Heeger AJ, Wudl F (2009) Well-defined donor–acceptor rod–coil diblock copolymers based on P3HT containing C(60): the morphology and role as a surfactant in bulk-heterojunction solar cells. J Mater Chem 19:5416–5423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations