Polymer Bulletin

, Volume 69, Issue 1, pp 63–69 | Cite as

Synthesis and characterization of pyromellitic diimides-containing conjugated polymers

Original Paper

Abstract

Conjugated polymers based on pyromellitic diimides, the most compact aromatic tetracarboxylic diimides have been synthesized. Relatively low-lying LUMO energy levels and strong intermolecular interactions, together with solution processibility might enable them to become a promising new class of polymers for n-channel semiconducting materials.

Keywords

Pyromellitic diimides Naphthalene tetracarboxylic diimide Perylene tetracarboxylic diimide Stille polycondensation 

Supplementary material

289_2012_704_MOESM1_ESM.doc (344 kb)
Electronic supplementary material The online version of this article contains supplementary material, which is available to authorized users. (DOC 343 kb)

References

  1. 1.
    Newman CR, Frisbie CD, da Silva Filho DA, Bredas JL, Ewbank PC, Mann KR (2004) Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mater 16:4436–4451CrossRefGoogle Scholar
  2. 2.
    Wen Y, Liu Y (2010) Recent progress in n-channel organic thin-film transistors. Adv Mater 22:1331–1345CrossRefGoogle Scholar
  3. 3.
    Suzuki Y, Miyazaki E, Takimiya K (2010) ((Alkyloxy)carbonyl)cyanomethylene-substituted thienoquinoidal compounds: a new class of soluble n-channel organic semiconductors for air-stable organic field-effect transistors. J Am Chem Soc 132:10453–10466CrossRefGoogle Scholar
  4. 4.
    Chen Z, Zheng Y, Yan H, Facchetti A (2009) Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J Am Chem Soc 131:8–9CrossRefGoogle Scholar
  5. 5.
    Huttner S, Sommer M, Thelakkat M (2008) N-type organic field effect transistors from perylene bisimide block copolymers and homopolymers. Appl Phys Lett 92:093302/1-3CrossRefGoogle Scholar
  6. 6.
    Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder SR (2007) A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc 129:7246–7247CrossRefGoogle Scholar
  7. 7.
    Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin YY, Dodabalapur A (2000) A soluble and air-stable organic semiconductor with high electron mobility. Nature 404:478–481CrossRefGoogle Scholar
  8. 8.
    Katz HE, Johnson J, Lovinger AJ, Li W (2000) Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors: structural variation and thiol-enhanced gold contacts. J Am Chem Soc 122:7787–7792CrossRefGoogle Scholar
  9. 9.
    Jones BA, Facchetti A, Marks TJ, Wasielewski MR (2007) Cyanonaphthalene diimide semiconductors for air-stable, flexible, and optically transparent n-channel field-effect transistors. Chem Mater 19:2703–2705CrossRefGoogle Scholar
  10. 10.
    Shukla D, Nelson SF, Freeman DC, Rajeswaran M, Ahearn WG, Meyer DM, Carey JT (2008) Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility n-type semiconductor for organic thin-film transistors. Chem Mater 20:7486–7491CrossRefGoogle Scholar
  11. 11.
    Jung BJ, Sun J, Lee T, Sarjeant A, Katz HE (2009) Low-temperature-processible, transparent, and air-operable n-channel fluorinated phenylethylated naphthalenetetracarboxylic diimide semiconductors applied to flexible transistors. Chem Mater 21:94–101CrossRefGoogle Scholar
  12. 12.
    See KC, Landis C, Sarjeant A, Katz HE (2008) Easily synthesized naphthalene tetracarboxylic diimide semiconductors with high electron mobility in air. Chem Mater 20:3609–3616CrossRefGoogle Scholar
  13. 13.
    Malenfant PRL, Dimitrakopoulos CD, Gelorme JD, Kosbar LL, Graham TO, Curioni A, Andreoni W (2002) N-type organic thin film transistor with high field effect mobility based on a N,N′-Dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl Phys Lett 80:2517–2519CrossRefGoogle Scholar
  14. 14.
    Ahrens MJ, Fuller MJ, Wasielewski MR (2003) Cyanated perylene-3,4-dicarboximides and perylene-3,4:9,10-bis(dicarboximide): facile chromophoric oxidants for organic photonics and electronics. Chem Mater 15:2684–2686CrossRefGoogle Scholar
  15. 15.
    Jones BA, Ahrens MJ, Yoon MH, Facchetti A, Marks TJ, Wasielewski MR (2004) High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew Chem Int Ed 43:6363–6366CrossRefGoogle Scholar
  16. 16.
    Ling MM, Erk P, Gomez M, Koenemann M, Locklin J, Bao Z (2007) Air-stable n-channel organic semiconductors base on perylene diimide derivatives without strong electron withdrawing groups. Adv Mater 19:1123–1127CrossRefGoogle Scholar
  17. 17.
    Piliego C, Jarzab D, Gigli G, Chen Z, Facchetti A, Loi MA (2009) High electron mobility and ambient stability in solution-processed perylene-based organic field-effect transistors. Adv Mater 21:1573–1576CrossRefGoogle Scholar
  18. 18.
    Molinari AS, Alves H, Chen Z, Facchetti A, Morpurgo AF (2009) High electron mobility in vacuum and ambient for PDIF-CN2 single-crystal transistors. J Am Chem Soc 131:2462–2463CrossRefGoogle Scholar
  19. 19.
    Jones BA, Facchetti A, Wasielewski MR, Marks TJ (2008) Effects of arylene diimide thin film growth conditions on n-channel OFET performance. Adv Funct Mater 18:1329–1339CrossRefGoogle Scholar
  20. 20.
    Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, Kastler M, Facchetti A (2009) A high-mobility electron-transporting polymer for printed transistors. Nature 457:679–686CrossRefGoogle Scholar
  21. 21.
    Zheng Q, Huang J, Sarjeant A, Katz HE (2008) Pyromellitic diimides: minimal cores for high mobility n-channel transistor semiconductors. J Am Chem Soc 130:14410–14411CrossRefGoogle Scholar
  22. 22.
    Carroll JB, Gray M, McMenimen KA, Hamilton DG, Rotello VM (2003) Redox modulation of benzene triimides and diimides via noncovalent interactions. Org Lett 5:3177–3180CrossRefGoogle Scholar
  23. 23.
    Suh DH, Chung EY, Hong YT, Choi KY (1998) Synthesis of a novel poly(aryl ether) with pendent N-phenylimide groups. Die Angewandte Makromolekulare Chemie 254:33–38CrossRefGoogle Scholar
  24. 24.
    Guo X, Watson MD (2008) Conjugated polymers from naphthalene bisimide. Org Lett 10:5333–5336CrossRefGoogle Scholar
  25. 25.
    Kato S, Nonaka Y, Shimasaki T, Goto K, Shinmyozu T (2008) Novel pyromellitic diimide-Based macrocycle with a linear pi-electronic system and bis(phenylethynyl)pyromellitic diimide: syntheses, structures, photophysical properties, and redox characteristics. J Org Chem 73:4063–4075CrossRefGoogle Scholar
  26. 26.
    Brisset H, Thobie-Gautier C, Jubault M, Gorgues A, Roncali J (1994) Small bandgap molecular semiconductors based on rigidified tetrathiafulvalene–bithiophene hybrid conjugated systems J Chem Soc. Chem Commun 1:1765–1766Google Scholar
  27. 27.
    Brisset H, Le Moustarder S, Blanchard P, Illien B, Riou A, Orduna J, Garin J, Roncali J (1997) Linearly extended hybrid tetrathiafulvalene analogues with bridged dithienylethyleneπ-conjugating spacers. J Mater Chem 7:2027–2032CrossRefGoogle Scholar
  28. 28.
    Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR (2011) Rylene and related diimides for organic electronics. Adv Mater 23:268–284CrossRefGoogle Scholar
  29. 29.
    Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323CrossRefGoogle Scholar
  30. 30.
    Chen Z, Zheng Y, Yan H, Facchetti A (2009) Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J Am Chem Soc 131:8–9CrossRefGoogle Scholar
  31. 31.
    Durban MM, Kazarinoff PD, Luscombe CK (2010) Synthesis and charazaterization of thiophene-containing naphthalene diimide n-type copolymers for OFET applications. Macromolecules 43:6348–6352CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations