Polymer Bulletin

, Volume 68, Issue 6, pp 1731–1746 | Cite as

Photoinduced orientation and cooperative motion of three epoxy-based azo polymers

Original Paper

Abstract

In this work, photoinduced orientation of three epoxy-based polymers bearing different type azo chromophores was studied. The epoxy-based azo polymers were synthesized through post-polymerization azo-coupling reactions based on an epoxy-based precursor polymer (BP-AN), which was synthesized by the step polymerization between bisphenol-A diglycidyl ether and aniline. The chromophore orientation and cooperative motion of the main-chain groups were studied by birefringence characterization, polarized infrared spectroscopy, and two-dimensional (2D)-IR correlation spectroscopy (COS). The results show that the orientation behavior of the epoxy-based azo polymers is closely related with the electron-withdrawing groups on the azo chromophores. The azo polymer BP-AZ-CN, which contains azo chromophores with cyano as the electron-withdrawing group, shows the fastest birefringence growth rate. The azo polymer BP-AZ-CA, containing carboxyl as the electron-withdrawing group, possesses high birefringence residual value and the highest saturated orientation degree in the series. Cooperative motion between azobenzene moieties and non-photochromic polymer backbone was revealed by polarized FTIR and 2D-IR COS. The photoinduced anisotropy is a result of the orientation of both azo chromophore and polymer main-chain. The understanding of the structure–property relationships can be used to develop materials with better performance for data storage and other applications.

Keywords

Azo polymer Epoxy-based Photoinduced orientation Polarized FTIR 2D-IR 

Notes

Acknowledgment

Financial support from the NSFC under projects 91027024 and 51061130556 is gratefully acknowledged.

References

  1. 1.
    Xie S, Natansohn A, Rochon P (1993) Recent developments in aromatic azo polymers research. Chem Mater 5(4):403–411CrossRefGoogle Scholar
  2. 2.
    Delaire JA, Nakatani K (2000) Linear and nonlinear optical properties of photochromic molecules and materials. Chem Rev 100(5):1817–1845CrossRefGoogle Scholar
  3. 3.
    Natansohn A, Rochon P (2002) Photoinduced motions in azo-containing polymers. Chem Rev 102(11):4139–4175CrossRefGoogle Scholar
  4. 4.
    Ikeda T, Mamiya J, Yu YL (2007) Photomechanics of liquid-crystalline elastomers and other polymers. Angew Chem Int Ed 46:506–528CrossRefGoogle Scholar
  5. 5.
    Ikeda T, Horiuchi S, Karanjit DB, Kurihara S, Tazuke S (1990) Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 2. photochemically induced isothermal phase transition behaviors. Macromolecules 23:42–48CrossRefGoogle Scholar
  6. 6.
    Rochon P, Batalla E, Natansohn A (1995) Optically induced surface gratings on azoaromatic polymer-films. Appl Phys Lett 66(2):136–138CrossRefGoogle Scholar
  7. 7.
    Kim DY, Tripathy SK, Li L, Kumar J (1995) Laser-induced holographic surface-relief gratings on nonlinear-optical polymer-films. Appl Phys Lett 66(10):1166–1168CrossRefGoogle Scholar
  8. 8.
    Li MH, Keller P, Li B, Wang XG, Brunet M (2003) Light-driven side-on nematic elastomer actuators. Adv Mater 15(7–8):569–572CrossRefGoogle Scholar
  9. 9.
    Yu YL, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light - Miniaturizing a simple photomechanical system could expand its range of applications. Nature 425(6954):145CrossRefGoogle Scholar
  10. 10.
    Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M (2004) Fast liquid-crystal elastomer swims into the dark. Nat Mater 3:307–310CrossRefGoogle Scholar
  11. 11.
    Todorov T, Nikolova L, Tomova N (1984) Polarization holography.1. A new high-efficiency organic material with reversible photoinduced birefringence. Appl Optics 23(23):4309–4312CrossRefGoogle Scholar
  12. 12.
    Eich M, Wendorff J, Reck B (1987) Reversible digital and holographic optical storage in polymeric liquid-crystals. Makromoleculare Chemie 8:59–63Google Scholar
  13. 13.
    Eich M, Wendorff J (1990) Laser-induced gratings and spectroscopy in monodomains of liquid-crystalline polymers. J Opt Soc Am B 7(8):1428–1436CrossRefGoogle Scholar
  14. 14.
    Natansohn A, Rochon P, Gosselin J, Xie S (1992) Azo polymers for reversible optical storage. 1. Poly[4′-[[2-(acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene]. Macromolecules 25(8):2268–2273CrossRefGoogle Scholar
  15. 15.
    Natansohn A, Xie S, Rochon P (1992) Azo polymers for reversible optical storage. 2. Poly[4′-[[2-(acryloyloxy)ethyl]ethylamino]-2-chloro-4-nitroazobenzene]. Macromolecules 25(20):5531–5532CrossRefGoogle Scholar
  16. 16.
    Natansohn A, Rochon P, Pezolet M, Audet P, Brown D, To S (1994) Azo polymers for reversible optical storage. 4 Cooperative motion of rigid groups in semicrystalline polymers. Macromolecules 27(9):2580–2585CrossRefGoogle Scholar
  17. 17.
    Brown D, Natansohn A, Rochon P (1995) Azo polymers for reversible optical storage. 5 Orientation and dipolar interactions of azobenzene side-groups in copolymers and blends containing methyl-methacrylate structural units. Macromolecules 28(18):6116–6123CrossRefGoogle Scholar
  18. 18.
    Ho MS, Natansohn A, Rochon P (1995) Azo polymers for reversible optical storage. 7 The effect of the size of the photochromic groups. Macromolecules 28(18):6124–6127CrossRefGoogle Scholar
  19. 19.
    Natansohn A, Rochon P, Ho MS, Barrett C (1995) Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene]. Macromolecules 28(12):4179–4183CrossRefGoogle Scholar
  20. 20.
    Ho MS, Natansohn A, Rochon P (1996) Azo polymers for reversible optical storage. 9 Copolymers containing two types of azobenzene side groups. Macromolecules 29(1):44–49CrossRefGoogle Scholar
  21. 21.
    Meng X, Natansohn A, Barrett C, Rochon P (1996) Azo polymers for reversible optical storage. 10 Cooperative motion of polar side groups in amorphous polymers. Macromolecules 29(3):946–952CrossRefGoogle Scholar
  22. 22.
    Meng X, Natansohn A, Rochon P (1996) Azo polymers for reversible optical storage. 11. Poly{4,4′-(1-methylethylidene)bisphenylene 3-[4-(4-nitrophenylazo)Phenyl]-3-aza-pentanedioate}. J Polym Sci Pol Phys 34(8):1461–1466CrossRefGoogle Scholar
  23. 23.
    Meng X, Natansohn A, Rochon P (1997) Azo polymers for reversible optical storage. 13 Photoorientation of rigid side groups containing two azo bonds. Polymer 38(11):2677–2682CrossRefGoogle Scholar
  24. 24.
    Song OK, Wang CH, Pauley MA (1997) Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below T-g. Macromolecules 30(22):6913–6919CrossRefGoogle Scholar
  25. 25.
    Buffeteau T, Natansohn A, Rochon P, Pezolet M (1996) Study of cooperative side group motions in amorphous polymers by time dependent infrared spectroscopy. Macromolecules 29(27):8783–8790CrossRefGoogle Scholar
  26. 26.
    Stumpe J, Lasker L, Fischer T, Rutloh M, Kostromin S, Ruhmann R (1996) Photo-orientation in amorphous and aligned films of photochromic liquid crystalline polymers. Thin Solid Films 285:252–256CrossRefGoogle Scholar
  27. 27.
    Natansohn A, Rochon P, Meng XS, Barrett C, Buffeteau T, Bonenfant S, Pezolet M (1998) Molecular addressing? Selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups. Macromolecules 31(4):1155–1161CrossRefGoogle Scholar
  28. 28.
    Kulinna C, Hvilsted S, Hendann C, Siesler HW, Ramanujam PS (1998) Selectively deuterated liquid crystalline cyanoazobenzene side-chain polyesters. 3 Investigations of laser-induced segmental mobility by Fourier transform infrared spectroscopy. Macromolecules 31(7):2141–2151CrossRefGoogle Scholar
  29. 29.
    Ishiguro M, Sato D, Shishido A, Ikeda T (2007) Bragg-type polarization gratings formed in thick polymer films containing azobenzene and tolane moieties. Langmuir 23(1):332–338CrossRefGoogle Scholar
  30. 30.
    Wu YL, Demachi Y, Tsutsumi O, Kanazawa A, Shiono T, Ikeda T (1998) Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 2. Effect of spacer length of the azobenzene unit on alignment behavior. Macromolecules 31(4):1104–1108CrossRefGoogle Scholar
  31. 31.
    Wu YL, Zhang QJ, Kanazawa A, Shiono T, Ikeda T, Nagase Y (1999) Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 5 Effect of the azo contents on alignment behavior and enhanced response. Macromolecules 32(12):3951–3956CrossRefGoogle Scholar
  32. 32.
    Wu YL, Kanazawa A, Shiono T, Ikeda T, Zhang QJ (1999) Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 4 Dynamic study of the alignment process. Polymer 40(17):4787–4793CrossRefGoogle Scholar
  33. 33.
    Han DH, Tong X, Zhao Y, Galstian T, Zhao Y (2010) Cyclic azobenzene-containing side-chain liquid crystalline polymers: synthesis and topological effect on mesophase transition, order, and photoinduced birefringence. Macromolecules 43(8):3664–3671CrossRefGoogle Scholar
  34. 34.
    Wang XG, Balasubramanian S, Kumar J, Tripathy SK, Li L (1998) Azochromophore-functionalized polyelectrolytes. 1 Synthesis, characterization, and photoprocessing. Chem Mater 10(6):1546–1553CrossRefGoogle Scholar
  35. 35.
    Kim MJ, Kumar J, Kim DY (2003) Photofabrication of superhelix-like patterns on azobenzene polymer films. Adv Mater 15(23):2005–2008CrossRefGoogle Scholar
  36. 36.
    Wang XG, Chen JI, Marturunkakul S, Li L, Kumar J, Tripathy SK (1997) Epoxy-based nonlinear optical polymers functionalized with tricyanovinyl chromophores. Chem Mater 9(1):45–50CrossRefGoogle Scholar
  37. 37.
    Wang XG, Kumar J, Tripathy SK, Li L, Chen JI, Marturunkakul S (1997) Epoxy-based nonlinear optical polymers from post azo coupling reaction. Macromolecules 30(2):219–225CrossRefGoogle Scholar
  38. 38.
    Wang XG, Yang K, Kumar J, Tripathy SK, Chittibabu KG, Li L, Lindsay G (1998) Heteroaromatic chromophore functionalized epoxy-based nonlinear optical polymers. Macromolecules 31(13):4126–4134CrossRefGoogle Scholar
  39. 39.
    Li YB, He YN, Tong XL, Wang XG (2005) Photoinduced deformation of amphiphilic azo polymer colloidal spheres. J Am Chem Soc 127(8):2402–2403CrossRefGoogle Scholar
  40. 40.
    Li YB, He YN, Tong XL, Wang XG (2006) Stretching effect of linearly polarized Ar + laser single-beam on azo polymer colloidal spheres. Langmuir 22(5):2288–2291CrossRefGoogle Scholar
  41. 41.
    Liu JP, He YN, Wang XG (2009) Size-dependent light-driven effect observed for azo polymer colloidal spheres with different average diameters. Langmuir 25(10):5974–5979CrossRefGoogle Scholar
  42. 42.
    Liu JP, He YN, Wang XG (2008) Azo polymer colloidal spheres containing different amounts of functional groups and their photoinduced deformation behavior. Langmuir 24(3):678–682CrossRefGoogle Scholar
  43. 43.
    Fernandez R, Mondragon I, Galante MJ, Oyanguren PA (2009) Bonding and molecular environment effects on photoorientation in epoxy-based polymers having azobenzene units. Eur Polym J 45(3):788–794CrossRefGoogle Scholar
  44. 44.
    Fernandez R, Mondragon I, Galante M, Oyanguren P (2009) Influence of chromophore concentration and network structure on the photo-orientation properties of crosslinked epoxy-based azopolymers. J Polym Sci Pol Phys 47(10):1004–1014CrossRefGoogle Scholar
  45. 45.
    He YN, Wang XG, Zhou QX (2002) Epoxy-based azo polymers: synthesis, characterization and photoinduced surface-relief-gratings. Polymer 43(26):7325–7333CrossRefGoogle Scholar
  46. 46.
    Tawa K, Kamada K, Kiyohara K, Ohta K, Yasumatsu D, Sekkat Z, Kawata S (2001) Photoinduced reorientation of azo dyes bonded to polyurethane studied by polarized FT-IR spectroscopy. Macromolecules 34(23):8232–8238CrossRefGoogle Scholar
  47. 47.
    Han M, Kidowaki M, Ichimura K, Ramanujam PS, Hvilsted S (2001) Influence of structures of polymer backbones on cooperative photoreorientation behavior of p-cyanoazobenzene side chains. Macromolecules 34(12):4256–4262CrossRefGoogle Scholar
  48. 48.
    Noda I (1993) Generalized 2-dimensional correlation method applicable to infrared, raman, and other types of spectroscopy. Appl Spectrosc 47(9):1329–1336CrossRefGoogle Scholar
  49. 49.
    Buffeteau T, Pezolet M (1998) Photoinduced orientation in azopolymers studied by infrared spectroscopy: Cooperative and biaxial orientation in semicrystalline polymers. Macromolecules 31(8):2631–2635CrossRefGoogle Scholar
  50. 50.
    Campbell VE, In I, McGee DJ, Woodward N, Caruso A, Gopalan P (2006) Chromophore orientation dynamics, phase stability, and photorefractive effects in branched azobenzene chromophores. Macromolecules 39(3):957–961CrossRefGoogle Scholar
  51. 51.
    Kim MJ, Lee JD, Chun C, Kim DY, Higuchi S, Nakayama T (2007) Control of photodynamic motions of azobenzene-derivative polymers by laser excitation wavelength. Macromol Chem Phys 208(16):1753–1763CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Laboratory for Advanced MaterialsTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations