Polymer Bulletin

, Volume 69, Issue 1, pp 49–61 | Cite as

Solvent-driven reorganization of poly(diphenylacetylene) in film and nanofiber by means of swelling method: solvent annealing effects on fluorescence emission properties and microstructures

  • Dong-Hee Han
  • Wang-Eun Lee
  • Suk-Joon Kim
  • Su-Dong Park
  • Giseop Kwak
Original Paper


Freeze-dried nanofiber (Fr-nanofiber), spin-coated film (Sp-film), and solvent-cast film (So-film) of poly[1-phenyl-2-(p-trimethylsilyl)phenylacetylene] (PTMSDPA) were prepared to investigate solvent-annealing effects on their FL emission properties and microstructures by the swelling method. Their FL emission bands at maximum intensity (λmax,FL) appeared at 525, 535, 540 nm, respectively. Their FL emission life times (τavr) were 0.489, 0.136, 0.130, respectively. In polarizing optical microscopy (POM) observation, the So-film showed a chevron texture on the surface, whereas Sp-film did not display any characteristic texture. The polarizing fluorescence microscopy images of the So-film converted in shadow when the polarizer angle changed from 0° to 90°. In XRD patterns, So-film showed a very sharp signal at a small angle of 6.9° with a corresponding lamellar layer distance of about 13 Å, whereas Sp-film did not show a sharp signal at the same angle. The FL intensity of PTMSDPA after annealing with ethanol under very slow evaporation more greatly decreased in turns of Fr-nanofiber (I/I0 0.38), Sp-film (I/I0 0.47), So-film (I/I0 0.86). FL emission spectra of Sp-film annealed with ethanol, hexane, and methanol under very slow evaporation were measured. Ethanol (I/I0 0.47) induced a greater decrease in FL emission intensity as compared to hexane (I/I0 0.78) and methanol (I/I0 0.65). POM, FL optical microscopy (FOM), and transmission electron microscopy (TEM) images as well as XRD patterns of Sp-film after ethanol annealing under slow evaporation were observed. The POM images and XRD patterns did not show any significant changes after solvent annealing while the FOM and TEM images certainly showed a little change. The FL emission of the film was weaker in the annealed part than in the non-annealed part. The annealed film exhibited several domains with certain lattice fringes of d space of ~3.6 Å, while the as-prepared film showed exclusively amorphous regions.


Solvent annealing Fluorescence Poly(diphenylacetylene) Swelling 

Supplementary material

289_2011_691_MOESM1_ESM.pdf (109 kb)
Supporting Information Available: The FL emission spectra of Sp-film upon annealing with ethanol under rapid and slow evaporation (Figure S1); XRD patterns of Sp-film before and after annealing with ethanol under slow evaporation (Figure S2). (PDF 108 kb)


  1. 1.
    Bunz UHF (2000) Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev 100(4):1605CrossRefGoogle Scholar
  2. 2.
    Grenier CR, Pisula W, Joncheray TJ, Muller K, Reynolds JR (2007) Regiosymmetric poly(dialkylphenylenedioxythiophene)s: electron-rich, stackable-conjugated nanoribbons. Angew Chem Int Ed 46(5):714CrossRefGoogle Scholar
  3. 3.
    Nguyen TQ, Kwong RC, Thompson ME, Schwartz BJ (2000) Improving the performance of conjugated polymer-based devices by control of interchain interactions and polymer film morphology. Appl Phys Lett 76(17):2454CrossRefGoogle Scholar
  4. 4.
    Ahn JH, Wang C, Widdowson NE, Pearson C, Bryce MR, Petty MC (2005) Thermal annealing of blended-layer organic light-emitting diodes. J Appl Phys 98(5):054508CrossRefGoogle Scholar
  5. 5.
    Bao Q, Li J, Li CM, Dong ZL, Lu Z, Qin F, Gong C, Guo J (2008) Direct observation and analysis of annealing-induced microstructure at interface and its effect on performance improvement of organic thin film transistors. J Phys Chem B 112(39):12270CrossRefGoogle Scholar
  6. 6.
    Kim DH, Lee BL, Moon H, Kang HM, Jeong EJ, Park JI, Han KM, Lee S, Yoo BW, Koo BW, Kim JY, Lee WH, Cho K, Becerril HA, Bao Z (2009) Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. J Am Chem Soc 131(17):6124CrossRefGoogle Scholar
  7. 7.
    Bao Z, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69(26):4108CrossRefGoogle Scholar
  8. 8.
    Kim Y, Choulis SA, Nelson J, Bradley DDC (2005) Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Appl Phys Lett 86(6):063502CrossRefGoogle Scholar
  9. 9.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864CrossRefGoogle Scholar
  10. 10.
    Lee WH, Kim DH, Choo JH, Jang Y, Lim JA, Kwak D, Cho K (2007) Change of molecular ordering in soluble acenes via solvent annealing and its effect on field-effect mobility. Appl Phys Lett 91(9):092105CrossRefGoogle Scholar
  11. 11.
    Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17(10):1636CrossRefGoogle Scholar
  12. 12.
    Kwak G, Minaguchi M, Sakaguchi T, Masuda T, Fujiki M (2007) Poly(diphenylacetylene) bearing long alkyl side chain via silylene linkage: its lyotropic liquid crystallinity and optical anisotropy. Chem Mater 19(15):3654CrossRefGoogle Scholar
  13. 13.
    Kwak G, Minaguchi M, Sakaguchi T, Masuda T, Fujiki M (2008) Alkyl side-chain length effects on fluorescence dynamics, lamellar layer structures, and optical anisotropy of poly(diphenylacetylene) derivatives. Macromolecules 41(7):2743CrossRefGoogle Scholar
  14. 14.
    Hidayat R, Tatsuhara S, Kim DW, Ozaki M, Yoshino K, Teraguchi M, Masuda T (2000) Time-resolved study of luminescence in highly luminescent disubstituted polyacetylene and its blend with poorly luminescent monosubstituted polyacetylene. Phys Rev B 61(15):10167CrossRefGoogle Scholar
  15. 15.
    Shukla A (2004) Theory of two-photon absorption in poly(diphenyl) polyacetylenes. Chem Phys 300(1–3):177CrossRefGoogle Scholar
  16. 16.
    Yuan WZ, Qin A, Lam JWY, Sun JZ, Dong Y, Haussler M, Liu J, Xu HP, Zhen Q, Tang BZ (2007) Disubstituted polyacetylenes containing photopolymerizable vinyl groups and polar ester functionality: polymer synthesis, aggregation-enhanced emission, and fluorescent pattern formation. Macromolecules 40(9):3159CrossRefGoogle Scholar
  17. 17.
    Qin A, Jim CKW, Tang Y, Lam JWY, Liu J, Mahtab F, Gao P, Tang BZ (2008) Aggregation-enhanced emissions of intramolecular excimers in disubstituted polyacetylenes. J Phys Chem B 112(31):9281CrossRefGoogle Scholar
  18. 18.
    Lee WE, Oh CJ, Park GT, Kim JW, Choi HJ, Sakaguchi T, Fujiki M, Nakao A, Shinohara KI, Kwak G (2010) Substitution position effect on photoluminescence emission and chain conformation of poly(diphenylacetylene) derivatives. Chem Commun 46(35):6491CrossRefGoogle Scholar
  19. 19.
    Toy LG, Nagai K, Freeman BD, Pinnau I, He Z, Masuda T, Teraguchi M, Yampolskii YP (2000) Pure-gas and vapor permeation and sorption properties of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA). Macromolecules 33(7):2516CrossRefGoogle Scholar
  20. 20.
    Lee WE, Kim JW, Oh CJ, Sakaguchi T, Fujiki M, Kwak G (2010) Correlation of intramolecular excimer emission with lamellar layer distance in liquid-crystalline polymers: verification by the film-swelling method. Angew Chem Int Ed 49(8):1406CrossRefGoogle Scholar
  21. 21.
    Kwak G, Lee WE, Jeong H, Sakaguchi T, Fujiki M (2009) Swelling-induced emission enhancement in substituted acetylene polymer film with large fractional free volume: fluorescence response to organic solvent stimuli. Macromolecules 42(1):20CrossRefGoogle Scholar
  22. 22.
    Kwak G, Lee WE, Kim WH, Lee H (2009) Fluorescence imaging of latent fingerprints on conjugated polymer films with large fractional free volume. Chem Commun 16:2112CrossRefGoogle Scholar
  23. 23.
    Jeong H, Lee WE, Kwak G (2010) Enhancements in emission and chemical resistance of substituted acetylene polymer via in situ sol–gel reaction in film. Macromolecules 43(2):1152CrossRefGoogle Scholar
  24. 24.
    Tsuchihara K, Masuda T, Higashimura T (1991) Tractable silicon-containing poly(diphenylacetylenes): their synthesis and high gas permeability. J Am Chem Soc 113(22):8548CrossRefGoogle Scholar
  25. 25.
    Tsuchihara K, Masuda T, Higashimura T (1992) Polymerization of silicon-containing diphenylacetylenes and high gas permeability of the product polymers. Macromolecules 25(21):5816CrossRefGoogle Scholar
  26. 26.
    Lee WE, Oh CJ, Kang IK, Kwak G (2010) Diphenylacetylene polymer nanofiber mats fabricated by freeze drying: preparation and application for explosive sensors. Macromol Chem Phys 211(17):1900CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dong-Hee Han
    • 1
  • Wang-Eun Lee
    • 2
  • Suk-Joon Kim
    • 1
  • Su-Dong Park
    • 1
  • Giseop Kwak
    • 2
  1. 1.Korea Electrotechnology Research InstituteChangwon-siKorea
  2. 2.Department of Polymer ScienceKyungpook National UniversityBuk-ku, DaeguKorea

Personalised recommendations