Polymer Bulletin

, Volume 68, Issue 5, pp 1425–1467 | Cite as

Functional polymers for photovoltaic devices

Original Paper

Abstract

Solar cells based on functional copolymers were considered as promising devices and can be used to solve the intractable energy crisis for humankind. In this review, several key factors in molecular structures and morphologies which may depress the power conversion efficiency of devices are discussed first. Moreover, we concentrate on the molecular design strategies which can be applied in synthesizing functional polymers with appropriate band gap energy, prolonged exciton diffusion distance, good charge carrier transportations, as well as suitable self-assembly microphase morphologies in solid state. Once these design strategies are selectively combined, polymer solar cells with optimized performance can be approached.

Keywords

Photovoltaic device Donor–acceptor copolymer Diblock copolymer Double-cable copolymer Metal-containing copolymer 

References

  1. 1.
    Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB (1996) Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C[sub 60] heterojunction photovoltaic cell. Appl Phys Lett 68:3120–3122CrossRefGoogle Scholar
  2. 2.
    Haugeneder A, Neges M, Kallinger C, Spirkl W, Lemmer U, Feldmann J, Scherf U, Harth E, uuml, gel A, llen K (1999) Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures. Phys Rev B 59:15346Google Scholar
  3. 3.
    Wöhrle D, Meissner D (1991) Organic solar cells. Adv Mater 3:129–138. doi:10.1002/adma.19910030303 CrossRefGoogle Scholar
  4. 4.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791. doi:10.1126/science.270.5243.1789 CrossRefGoogle Scholar
  5. 5.
    Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338. doi:10.1021/cr050149z CrossRefGoogle Scholar
  6. 6.
    Heremans P, Cheyns D, Rand BP (2009) Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res 42:1740–1747. doi:10.1021/ar9000923 CrossRefGoogle Scholar
  7. 7.
    Scherf U, Gutacker A, Koenen N (2008) All-conjugated block copolymers. Acc Chem Res 41:1086–1097. doi:10.1021/ar7002539 CrossRefGoogle Scholar
  8. 8.
    Westenhoff S, Howard IA, Hodgkiss JM, Kirov KR, Bronstein HA, Williams CK, Greenham NC, Friend RH (2008) Charge recombination in organic photovoltaic devices with high open-circuit voltages. J Am Chem Soc 130:13653–13658. doi:10.1021/ja803054g CrossRefGoogle Scholar
  9. 9.
    Gu ZJ, Kanto T, Tsuchiya K, Shimomura T, Ogino K (2011) Annealing effect on performance and morphology of photovoltaic devices based on poly(3-hexylthiophene)-b-poly(ethylene oxide). J Polym Sci A 49:2645–2652. doi:10.1002/pola.24696 CrossRefGoogle Scholar
  10. 10.
    Yin W, Dadmun M (2011) A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. ACS Nano 5:4756–4768. doi:10.1021/nn200744q CrossRefGoogle Scholar
  11. 11.
    Tsai YS, Chu WP, Juang FS, Tang RM, Chang MH, Hsieh TE, Liu MO (2011) Efficiency improvement of organic solar cells by slow growth and changing spin-coating parameters for active layers. Jpn J Appl Phys 50:022301–022304. doi:10.1143/jjap.50.022301 CrossRefGoogle Scholar
  12. 12.
    Ebbens S, Hodgkinson R, Parnell AJ, Dunbar A, Martin SJ, Topham PD, Clarke N, Howse JR (2011) In situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating. ACS Nano 5:5124–5131. doi:10.1021/nn201210e CrossRefGoogle Scholar
  13. 13.
    Bo P, Xia G, Chaohua C, Yingping Z, Chunyue P, Yongfang L (2011) Performance improvement of polymer solar cells by using a solvent-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) buffer layer. Appl Phys Lett 98:243308. doi:10.1063/1.3600665 CrossRefGoogle Scholar
  14. 14.
    Salim T, Wong LH, Brauer B, Kukreja R, Foo YL, Bao ZN, Lam YM (2011) Solvent additives and their effects on blend morphologies of bulk heterojunctions. J Mater Chem 21:242–250. doi:10.1039/c0jm01976c CrossRefGoogle Scholar
  15. 15.
    Xia YJ, Ouyang JY (2011) PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. J Mater Chem 21:4927–4936. doi:10.1039/c0jm04177g CrossRefGoogle Scholar
  16. 16.
    Kim JS, Lee JH, Park JH, Shim C, Sim M, Cho K (2011) High-efficiency organic solar cells based on preformed poly(3-hexylthiophene) nanowires. Adv Funct Mater 21:480–486. doi:409335753,12,1 CrossRefGoogle Scholar
  17. 17.
    Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533–4542. doi:10.1021/cm049654n CrossRefGoogle Scholar
  18. 18.
    Fan Z, Razavi H, Do J-W, Moriwaki A, Ergen O, Chueh Y-L, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S, Yu K, Wu M, Ager JW, Javey A (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 8:648–653CrossRefGoogle Scholar
  19. 19.
    Coakley KM, McGehee MD (2003) Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Appl Phys Lett 83:3380–3382CrossRefGoogle Scholar
  20. 20.
    Gao H, Chen YX, Luo Y (2011) Three-dimensional nano-networked P3MT/PCBM solar cells. Nanotechnology 22:285203. doi:10.1088/0957-4484/22/28/285203
  21. 21.
    Zhu M, Zhou CJ, Zhao YJ, Li YJ, Liu HB, Li YL (2009) Synthesis of a fluorescent polymer bearing covalently linked thienylene moieties and rhodamine for efficient sensing. Macromol Rapid Commun 30:1339–1344. doi:10.1002/marc.200900210 CrossRefGoogle Scholar
  22. 22.
    Lv J, Ouyang CB, Yin XD, Zheng HY, Zuo ZC, Xu JL, Liu HB, Li YL (2008) Reversible and highly selective fluorescent sensor for mercury(II) based on a water-soluble poly(para-phenylene)s containing thymine and sulfonate moieties. Macromol Rapid Commun 29:1588–1592. doi:10.1002/marc.200800256 CrossRefGoogle Scholar
  23. 23.
    Li CH, Zhou CJ, Zheng HY, Yin XD, Zuo ZC, Liu HB, Li YL (2008) Synthesis of a novel poly (para-phenylene ethynylene) for highly selective and sensitive sensing mercury (II) ions. J Polym Sci A 46:1998–2007. doi:10.1002/pola.22534 CrossRefGoogle Scholar
  24. 24.
    Li CH, Guo YB, Lv J, Xu JL, Li YL, Wang S, Liu HB, Zhu DB (2007) Induced helix formation and stabilization of a meta-linked polymer containing pyridine units. J Polym Sci A 45:1403–1412. doi:10.1002/pola.21910 CrossRefGoogle Scholar
  25. 25.
    Liu Y, Deng CM, Tang L, Qin AJ, Hu RR, Sun JZ, Tang BZ (2011) Specific detection of d-glucose by a tetraphenylethene-based fluorescent sensor. J Am Chem Soc 133:660–663. doi:10.1021/ja107086y CrossRefGoogle Scholar
  26. 26.
    Liu JZ, Zhong YC, Lam JWY, Lu P, Hong YN, Yu Y, Yue YN, Faisal M, Sung HHY, Williams ID, Wong KS, Tang BZ (2010) Hyperbranched conjugated polysiloles: synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives. Macromolecules 43:4921–4936. doi:10.1021/ma902432m CrossRefGoogle Scholar
  27. 27.
    Fang HJ, Xiao SX, Li YL, Xiao SQ, Li HM, Liu HB, Shi ZQ, Zhu DB (2003) Synthesis and characterization of a C-60 covalently linked poly(phenylenevinylene) derivative containing trimethylsilyl pendant. Synth Met 135:837–838. doi:10.1016/s0379-6779(02)00922-0 CrossRefGoogle Scholar
  28. 28.
    Wang S, Yang JL, Li YL, Lin HZ, Guo ZX, Xiao SX, Shi ZQ, Zhu DB, Woo HS, Carroll DL, Kee IS, Lee JH (2002) Composites of C-60 based poly(phenylene vinylene) dyad and conjugated polymer for polymer light-emitting devices. Appl Phys Lett 80:3847–3849. doi:10.1063/1.1480881 CrossRefGoogle Scholar
  29. 29.
    Wang S, Xiao SX, Li YL, Shi ZQ, Du CM, Fang HJ, Zhu DB (2002) Synthesis and characterization of new C-60-PPV dyads containing carbazole moiety. Polymer 43:2049–2054. doi:10.1016/s0032-3861(01)00795-9 CrossRefGoogle Scholar
  30. 30.
    Xiao SX, Wang S, Fang HJ, Li YL, Shi ZQ, Du CM, Zhu DB (2001) Synthesis and characterization of a novel class of PPV derivatives covalently linked to C-60. Macromol Rapid Commun 22:1313–1318. doi:10.1002/1521-3927(20011101)22:16<1313:aid-marc1313>3.0.co;2-y CrossRefGoogle Scholar
  31. 31.
    Liu Y, Yang CH, Li YJ, Li YL, Wang S, Zhuang JP, Liu HB, Wang N, He XR, Li YF, Zhu DB (2005) Synthesis and photovoltaic characteristics of novel copolymers containing poly(phenylenevinylene) and triphenylamine moieties connected at 1,7 bay positions of perylene bisimide. Macromolecules 38:716–721. doi:10.1021/ma048491l CrossRefGoogle Scholar
  32. 32.
    Jiu T, Li Y, Liu X, Liu H, Li C, Ye J, Zhu D (2007) Molecular modeling of poly(p-phenylenevinylene): Synthesis and photophysical properties of oligomers. J Polym Sci A 45:911–924. doi:10.1002/pola.21862 CrossRefGoogle Scholar
  33. 33.
    Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923. doi:10.1021/cr900182s CrossRefGoogle Scholar
  34. 34.
    Wu J-S, Cheng Y-J, Dubosc M, Hsieh C-H, Chang C-Y, Hsu C-S (2010) Donor–acceptor polymers based on multi-fused heptacyclic structures: synthesis, characterization and photovoltaic applications. Chem Commun 46:3259–3261CrossRefGoogle Scholar
  35. 35.
    Zhang F, Mammo W, Andersson LM, Admassie S, Andersson MR, Inganäs O (2006) Low-bandgap alternating fluorene copolymer/methanofullerene heterojunctions in efficient near-infrared polymer solar cells. Adv Mater 18:2169–2173. doi:10.1002/adma.200600124 CrossRefGoogle Scholar
  36. 36.
    Cho SY, Grimsdale AC, Jones DJ, Watkins SE, Holmes AB (2007) Polyfluorenes without monoalkylfluorene defects. J Am Chem Soc 129:11910–11911. doi:10.1021/ja074634i CrossRefGoogle Scholar
  37. 37.
    Schulz GL, Chen XW, Holdcroft S (2009) High band gap poly(9,9-dihexylfluorene-alt-bithiophene) blended with 6,6-phenyl C-61 butyric acid methyl ester for use in efficient photovoltaic devices. Appl Phys Lett 94:023302. doi:02330210.1063/1.3070574 CrossRefGoogle Scholar
  38. 38.
    Tang W, Ke L, Tan L, Lin T, Kietzke T, Chen Z-K (2007) Conjugated copolymers based on fluorene-thieno[3,2-b]thiophene for light-emitting diodes and photovoltaic cells. Macromolecules 40:6164–6171. doi:10.1021/ma070575h CrossRefGoogle Scholar
  39. 39.
    Xiao K, Liu Y, Qi T, Zhang W, Wang F, Gao J, Qiu W, Ma Y, Cui G, Chen S, Zhan X, Yu G, Qin J, Hu W, Zhu D (2005) A highly π-stacked organic semiconductor for field-effect transistors based on linearly condensed pentathienoacene. J Am Chem Soc 127:13281–13286. doi:10.1021/ja052816b CrossRefGoogle Scholar
  40. 40.
    He M, Li J, Sorensen ML, Zhang F, Hancock RR, Fong HH, Pozdin VA, Smilgies D-M, Malliaras GG (2009) Alkylsubstituted thienothiophene semiconducting materials: structure–property relationships. J Am Chem Soc 131:11930–11938. doi:10.1021/ja903895s CrossRefGoogle Scholar
  41. 41.
    Zhang S, He C, Liu Y, Zhan X, Chen J (2009) Synthesis of a soluble conjugated copolymer based on dialkyl-substituted dithienothiophene and its application in photovoltaic cells. Polymer 50:3595–3599CrossRefGoogle Scholar
  42. 42.
    Li J, Tan H-S, Chen Z-K, Goh W-P, Wong H-K, Ong K-H, Liu W, Li CM, Ong BS (2011) Dialkyl-substituted dithienothiophene copolymers as polymer semiconductors for thin-film transistors and bulk heterojunction solar cells. Macromolecules 44:690–693. doi:10.1021/ma102247x CrossRefGoogle Scholar
  43. 43.
    Takihana Y, Shiotsuki M, Sanda F, Masuda T (2004) Synthesis and properties of carbazole-containing poly(aryleneethynylenes) and poly(aryleneimines). Macromolecules 37:7578–7583. doi:10.1021/ma049391i CrossRefGoogle Scholar
  44. 44.
    Leclerc N, Michaud A, Sirois K, Morin JF, Leclerc M (2006) Synthesis of 2,7-carbazolenevinylene-based copolymers and characterization of their photovoltaic properties. Adv Funct Mater 16:1694–1704. doi:10.1002/adfm.200600171 CrossRefGoogle Scholar
  45. 45.
    Zhang R, Li B, Iovu MC, Jeffries-El M, Sauvé G, Cooper J, Jia S, Tristram-Nagle S, Smilgies DM, Lambeth DN, McCullough RD, Kowalewski T (2006) Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J Am Chem Soc 128:3480–3481. doi:10.1021/ja055192i CrossRefGoogle Scholar
  46. 46.
    Chan S-H, Chen C-P, Chao T-C, Ting C, Lin C-S, Ko B-T (2008) Synthesis, characterization, and photovoltaic properties of novel semiconducting polymers with thiophene–phenylene–thiophene (TPT) as coplanar units. Macromolecules 41:5519–5526. doi:10.1021/ma800494k CrossRefGoogle Scholar
  47. 47.
    Anthony JE (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106:5028–5048. doi:10.1021/cr050966z CrossRefGoogle Scholar
  48. 48.
    Okamoto T, Bao Z (2007) Synthesis of solution-soluble pentacene-containing conjugated copolymers. J Am Chem Soc 129:10308–10309. doi:10.1021/ja0725403 CrossRefGoogle Scholar
  49. 49.
    Okamoto T, Jiang Y, Qu F, Mayer AC, Parmer JE, McGehee MD, Bao Z (2008) Synthesis and characterization of pentacene- and anthradithiophene-fluorene conjugated copolymers synthesized by Suzuki reactions. Macromolecules 41:6977–6980. doi:10.1021/ma800931a CrossRefGoogle Scholar
  50. 50.
    Shen P, Sang G, Lu J, Zhao B, Wan M, Zou Y, Li Y, Tan S (2008) Effect of 3D π–π stacking on photovoltaic and electroluminescent properties in triphenylamine-containing poly(p-phenylenevinylene) derivatives. Macromolecules 41:5716–5722. doi:10.1021/ma800847f CrossRefGoogle Scholar
  51. 51.
    Murphy AR, Fréchet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107:1066–1096. doi:10.1021/cr0501386 CrossRefGoogle Scholar
  52. 52.
    Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010. doi:10.1021/cr050143+ CrossRefGoogle Scholar
  53. 53.
    Liang Y, Wu Y, Feng D, Tsai S-T, Son H-J, Li G, Yu L (2008) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131:56–57. doi:10.1021/ja808373p CrossRefGoogle Scholar
  54. 54.
    Neef CJ, Brotherston ID, Ferraris JP (1999) Synthesis and electronic properties of poly(2-phenylthieno[3,4-b]thiophene): a new low band gap polymer. Chem Mater 11:1957–1958. doi:10.1021/cm9901109 CrossRefGoogle Scholar
  55. 55.
    Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon 3:649–653CrossRefGoogle Scholar
  56. 56.
    Shi C, Yao Y, Yang Y, Pei Q (2006) Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. J Am Chem Soc 128:8980–8986. doi:10.1021/ja061664x CrossRefGoogle Scholar
  57. 57.
    Chen J, Cao Y (2009) Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res 42:1709–1718. doi:10.1021/ar900061z CrossRefGoogle Scholar
  58. 58.
    Huang C, Lu F, Li Y, Gan H, Jiu T, Xiao J, Xu X, Cui S, Liu H, Zhu D (2007) A novel building block for donor–acceptor conjugated polymers containing perylene, poly(p-phenylenevinylene), and fullerene. J Nanosci Nanotechnol 7:1472–1478. doi:10.1166/jnn.2007.329 CrossRefGoogle Scholar
  59. 59.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRefGoogle Scholar
  60. 60.
    Osaka I, McCullough RD (2008) Advances in molecular design and synthesis of regioregular polythiophenes. Acc Chem Res 41:1202–1214. doi:10.1021/ar800130s CrossRefGoogle Scholar
  61. 61.
    Chang YT, Hsu SL, Su MH, Wei KH (2007) Soluble phenanthrenyl-imidazole-presenting regioregular poly(3-octylthiophene) copolymers having tunable bandgaps for solar cell applications. Adv Funct Mater 17:3326–3331. doi:10.1002/adfm.200700423 CrossRefGoogle Scholar
  62. 62.
    Chang Y-T, Hsu S-L, Chen G-Y, Su M-H, Singh TA, Diau EW-G, Wei K-H (2008) Intramolecular donor–acceptor regioregular poly(3-hexylthiophene)s presenting octylphenanthrenyl-imidazole moieties exhibit enhanced charge transfer for heterojunction solar cell applications. Adv Funct Mater 18:2356–2365. doi:10.1002/adfm.200701150 CrossRefGoogle Scholar
  63. 63.
    Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C (2006) High photovoltaic performance of a low-bandgap polymer. Adv Mater 18:2884–2889. doi:10.1002/adma.200600160 CrossRefGoogle Scholar
  64. 64.
    Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500CrossRefGoogle Scholar
  65. 65.
    Peet J, Soci C, Coffin RC, Nguyen TQ, Mikhailovsky A, Moses D, Bazan GC (2006) Method for increasing the photoconductive response in conjugated polymer/fullerene composites. Appl Phys Lett 89:252105. doi:10.1063/1.2408661 Google Scholar
  66. 66.
    Wang EG, Wang L, Lan LF, Luo C, Zhuang WL, Peng JB, Cao Y (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett 92:033307. doi:10.1063/1.2836266 Google Scholar
  67. 67.
    Hou J, Chen H-Y, Zhang S, Li G, Yang Y (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc 130:16144–16145. doi:10.1021/ja806687u CrossRefGoogle Scholar
  68. 68.
    Coffin RC, Peet J, Rogers J, Bazan GC (2009) Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat Chem 1:657–661CrossRefGoogle Scholar
  69. 69.
    Chen H-Y, Hou J, Hayden AE, Yang H, Houk KN, Yang Y (2010) Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv Mater 22:371–375. doi:10.1002/adma.200902469 CrossRefGoogle Scholar
  70. 70.
    Amb CM, Chen S, Graham KR, Subbiah J, Small CE, So F, Reynolds JR (2011) Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J Am Chem Soc 133:10062–10065. doi:10.1021/ja204056m CrossRefGoogle Scholar
  71. 71.
    Chu T-Y, Lu J, Beaupré S, Zhang Y, Pouliot J-RM, Wakim S, Zhou J, Leclerc M, Li Z, Ding J, Tao Y (2011) Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2′,3′-d]silole copolymer with a power conversion efficiency of 7.3%. J Am Chem Soc 133:4250–4253CrossRefGoogle Scholar
  72. 72.
    Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y (2011) Donor–acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J Am Chem Soc 133:9638–9641. doi:10.1021/ja201131h CrossRefGoogle Scholar
  73. 73.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv Mater 18:789–794. doi:10.1002/adma.200501717 CrossRefGoogle Scholar
  74. 74.
    Walker B, Tamayo AB, Dang X-D, Zalar P, Seo JH, Garcia A, Tantiwiwat M, Nguyen T-Q (2009) nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv Funct Mater 19:3063–3069. doi:10.1002/adfm.200900832 CrossRefGoogle Scholar
  75. 75.
    Tamayo AB, Xuan-Dang D, Walker B, Junghwa S, Kent T, Thuc-Quyen N (2009) A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells. Appl Phys Lett 94:103301–103303. doi:10.1063/1.3086897 Google Scholar
  76. 76.
    Loser S, Bruns CJ, Miyauchi H, RoP Ortiz, Facchetti A, Stupp SI, Marks TJ (2011) A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. J Am Chem Soc 133:8142–8145. doi:10.1021/ja202791n CrossRefGoogle Scholar
  77. 77.
    Ha JS, Kim KH, Choi DH (2011) 2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1, 4-(2H,5H)-dione-based donor–acceptor alternating copolymer bearing 5,5′-di(thiophen-2-yl)-2,2′-biselenophene exhibiting 1.5 cm2 V−1 s−1 hole mobility in thin-film transistors. J Am Chem Soc 133:10364–10367. doi:10.1021/ja203189h CrossRefGoogle Scholar
  78. 78.
    Bijleveld JC, Zoombelt AP, Mathijssen SGJ, Wienk MM, Turbiez M, de Leeuw DM, Janssen RAJ (2009) Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. J Am Chem Soc 131:16616–16617. doi:10.1021/ja907506r CrossRefGoogle Scholar
  79. 79.
    Bijleveld JC, Gevaerts VS, Nuzzo D Di, Turbiez M, Mathijssen SGJ, de Leeuw DM, Wienk MM, Janssen RAJ (2010) Efficient solar cells based on an easily accessible diketopyrrolopyrrole polymer. Adv Mater 22:E242–E246. doi:10.1002/adma.201001449 CrossRefGoogle Scholar
  80. 80.
    Woo CH, Beaujuge PM, Holcombe TW, Lee OP, Fréchet JMJ (2010) Incorporation of furan into low band-gap polymers for efficient solar cells. J Am Chem Soc 132:15547–15549. doi:10.1021/ja108115y CrossRefGoogle Scholar
  81. 81.
    Wienk MM, Turbiez M, Gilot J, Janssen RAJ (2008) Narrow-bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performance. Adv Mater 20:2556–2560. doi:10.1002/adma.200800456 CrossRefGoogle Scholar
  82. 82.
    Zoombelt AP, Mathijssen SGJ, Turbiez MGR, Wienk MM, Janssen RAJ (2010) Small band gap polymers based on diketopyrrolopyrrole. J Mater Chem 20:2240–2246CrossRefGoogle Scholar
  83. 83.
    Xiao S, Stuart AC, Liu S, Zhou H, You W (2010) Conjugated polymer based on polycyclic aromatics for bulk heterojunction organic solar cells: a case study of quadrathienonaphthalene polymers with 2% efficiency. Adv Funct Mater 20:635–643. doi:10.1002/adfm.200901407 CrossRefGoogle Scholar
  84. 84.
    Zhou H, Yang L, Stuart AC, Price SC, Liu S, You W (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. Angew Chem Int Ed 50:2995–2998. doi:10.1002/anie.201005451 CrossRefGoogle Scholar
  85. 85.
    Price SC, Stuart AC, Yang L, Zhou H, You W (2011) Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer–fullerene solar cells. J Am Chem Soc 133:4625–4631. doi:10.1021/ja1112595 CrossRefGoogle Scholar
  86. 86.
    Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M (2007) Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J Am Chem Soc 130:732–742. doi:10.1021/ja0771989 CrossRefGoogle Scholar
  87. 87.
    Seo JH, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger AJ, Bazan GC (2011) Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J Am Chem Soc 133:8416–8419. doi:10.1021/ja2037673 CrossRefGoogle Scholar
  88. 88.
    Li Y, Wu Y, Ong BS (2006) Polyindolo[3,2-b]carbazoles:  a new class of p-channel semiconductor polymers for organic thin-film transistors. Macromolecules 39:6521–6527. doi:10.1021/ma0612069 CrossRefGoogle Scholar
  89. 89.
    Wu YL, Li YN, Gardner S, Ong BS (2005) Indolo 3,2-b carbazole-based thin-film transistors with high mobility and stability. J Am Chem Soc 127:614–618. doi:10.1021/ja0456149 CrossRefGoogle Scholar
  90. 90.
    Tsai J-H, Chueh C–C, Lai M-H, Wang C-F, Chen W-C, Ko B-T, Ting C (2009) Synthesis of new indolocarbazole-acceptor alternating conjugated copolymers and their applications to thin film transistors and photovoltaic cells. Macromolecules 42:1897–1905. doi:10.1021/ma802720n CrossRefGoogle Scholar
  91. 91.
    Li Y, Xu B, Li H, Cheng W, Xue L, Chen F, Lu H, Tian W (2011) Molecular engineering of copolymers with donor–acceptor structure for bulk heterojunction photovoltaic cells toward high photovoltaic performance. J Phys Chem C 115:2386–2397. doi:10.1021/jp1090872 CrossRefGoogle Scholar
  92. 92.
    Cravino A, Sariciftci NS (2003) Organic electronics: molecules as bipolar conductors. Nat Mater 2:360–361CrossRefGoogle Scholar
  93. 93.
    Xu JH, Li YL, Guo ZX, Li FY, Shi ZQ, Pan CY, Zhu DB (2000) A novel reaction: 60,70 fullerene reacting with 4,4,5,5-tetramethylimidazoline-2-thione and alpha-aminoacids as carbene reaction. J Phys Chem Solids 61:1081–1088. doi:10.1016/s0022-3697(99)00365-0 CrossRefGoogle Scholar
  94. 94.
    Shi ZQ, Li YL, Xu JH, Ge ZX, Zhu DB (2000) Covalently linked 60,70 fullerenes-nitroxide unit for synthesis and characterization. J Phys Chem Solids 61:1095–1099. doi:10.1016/s0022-3697(99)00367-4 CrossRefGoogle Scholar
  95. 95.
    Ge ZX, Li YL, Shi ZQ, Bai FF, Zhu DB (2000) Synthesis and photophysical characterization of a new crown ether-bearing 70 fulleropyrrolidine derivative. J Phys Chem Solids 61:1075–1079. doi:10.1016/s0022-3697(99)00364-9 CrossRefGoogle Scholar
  96. 96.
    Du CM, Li YL, Wang S, Shi ZQ, Xiao SX, Zhu DB (2001) Synthesis and characterization of 60 fullerene-substituted oligopyridines ruthenium complexes. Synth Met 124:287–289. doi:10.1016/s0379-6779(01)00363-0 CrossRefGoogle Scholar
  97. 97.
    Xiao SQ, Li YL, Fang HJ, Li HM, Liu HB, Shi ZQ, Jiang L, Zhu DB (2002) Synthesis and characterization of three novel 60 fullerene derivatives toward self-assembled nanoparticles through interaction of hydrogen bonding. Org Lett 4:3063–3066. doi:10.1021/ol026386v CrossRefGoogle Scholar
  98. 98.
    Li YL, Wang S, Li FY, Du CM, Shi ZQ, Zhu DB, Song YL (2001) Preparation and optical limiting properties of polycarbonates containing fullerene unit. Chem Phys Lett 337:403–407. doi:10.1016/s0009-2614(01)00211-1 CrossRefGoogle Scholar
  99. 99.
    Liu C, Li Y, Li C, Li W, Zhou C, Liu H, Bo Z, Li Y (2009) New methanofullerenes containing amide as electron acceptor for construction photovoltaic devices. J Phys Chem C 113:21970–21975. doi:10.1021/jp907240n CrossRefGoogle Scholar
  100. 100.
    Li YJ, Liu Y, Wang N, Li YL, Liu HB, Lu FS, Zhuang JP, Zhu DB (2005) Self-assembled monolayers of C-60-perylenetetracarboxylic diimide-C-60 triad on indium tin oxide surface. Carbon 43:1968–1975. doi:10.1016/j.carbon.2005.03.005 CrossRefGoogle Scholar
  101. 101.
    Li YJ, Li YL, Liu HB, Wang S, Wang N, Zhuang JP, Li XF, He XR, Zhu DB (2005) Self-assembled monolayers of porphyrin-perylenetetracarboxylic diimide-60 fullerene on indium tin oxide electrodes: enhancement of light harvesting in the visible light region. Nanotechnology 16:1899–1904. doi:10.1088/0957-4484/16/9/080 CrossRefGoogle Scholar
  102. 102.
    Li Y, Li Y, Li J, Li C, Liu X, Yuan M, Liu H, Wang S (2006) Synthesis, characterization, and self-assembly of nitrogen-containing heterocoronenetetracarboxylic acid diimide analogues: Photocyclization of N-heterocycle-substituted perylene bisimides. Chem Eur J 12:8378–8385. doi:10.1002/chem.200600605 CrossRefGoogle Scholar
  103. 103.
    Li Y, Zheng H, Li Y, Wang S, Wu Z, Liu P, Gao Z, Liu H (2007) Photonic logic gates based on control of FRET by a solvatochromic perylene bisimide. J Org Chem 72:2878–2885. doi:10.1021/jo0624748 CrossRefGoogle Scholar
  104. 104.
    He X, Liu H, Wang N, Ai X, Wang S, Li Y, Huang C, Cui S, Li Y, Zhu D (2005) Synthesis and characterization of new types of perylene bisimide-containing conjugated copolymers. Macromol Rapid Commun 26:721–727. doi:10.1002/marc.200400660 CrossRefGoogle Scholar
  105. 105.
    Li Y, Gan Z, Wang N, He X, Li Y, Wang S, Liu H, Araki Y, Ito O, Zhu D (2006) Synthesis and characterization of porphyrin–ferrocene–fullerene triads. Tetrahedron 62:4285–4293. doi:10.1016/j.tet.2006.02.076 CrossRefGoogle Scholar
  106. 106.
    Xiao SQ, Li YL, Li YJ, Zhuang JP, Wang N, Liu HB, Ning B, Liu Y, Lu FS, Fan LZ, Yang CH, Li YF, Zhu DB (2004) 60 Fullerene-based molecular triads with expanded absorptions in the visible region: Synthesis and photovoltaic properties. J Phys Chem B 108:16677–16685. doi:10.1021/jp0478413 CrossRefGoogle Scholar
  107. 107.
    Xiao SQ, El-Khouly ME, Li YL, Gan ZH, Liu HB, Jiang L, Araki Y, Ito O, Zhu D (2005) Dyads and triads containing perylenetetracarboxylic diimide and porphyrin: efficient photoinduced electron transfer elicited via both excited singlet states. J Phys Chem B 109:3658–3667. doi:10.1021/jp045163e CrossRefGoogle Scholar
  108. 108.
    Ramos AM, Rispens MT, van Duren JKJ, Hummelen JC, Janssen RAJ (2001) Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendant fullerenes. J Am Chem Soc 123:6714–6715. doi:10.1021/ja015614y CrossRefGoogle Scholar
  109. 109.
    Gomez R, Veldman D, Blanco R, Seoane C, Segura JL, Janssen RAJ (2007) Energy and electron transfer in a poly(fluorene-alt-phenylene) bearing perylenediimides as pendant electron acceptor groups. Macromolecules 40:2760–2772. doi:10.1021/ma070026b CrossRefGoogle Scholar
  110. 110.
    Hains AW, Liang Z, Woodhouse MA, Gregg BA (2010) Molecular semiconductors in organic photovoltaic cells. Chem Rev 110:6689–6735. doi:10.1021/cr9002984 CrossRefGoogle Scholar
  111. 111.
    Kaunisto K, Chukharev V, Tkachenko NV, Efimov A, Lemmetyinen H (2009) Energy and electron transfer in multilayer films containing porphyrin–fullerene dyad. J Phy Chem C 113:3819–3825. doi:10.1021/jp807962j CrossRefGoogle Scholar
  112. 112.
    Liddell PA, Kodis G, Moore AL, Moore TA, Gust D (2002) Photonic switching of photoinduced electron transfer in a dithienylethene–porphyrin–fullerene triad molecule. J Am Chem Soc 124:7668–7669. doi:10.1021/ja026327c CrossRefGoogle Scholar
  113. 113.
    Huang C, Wen L, Liu H, Li Y, Liu X, Yuan M, Zhai J, Jiang L, Zhu D (2009) Controllable growth of 0D to multidimensional nanostructures of a novel porphyrin molecule. Adv Mater 21:1721–1725. doi:10.1002/adma.200802114 CrossRefGoogle Scholar
  114. 114.
    Li Y, Li X, Li Y, Liu H, Wang S, Gan H, Li J, Wang N, He X, Zhu D (2006) Controlled self-assembly behavior of an amphiphilic bisporphyrin–bipyridinium–palladium complex: from multibilayer vesicles to hollow capsules. Angew Chem Int Ed 45:3639–3643. doi:10.1002/anie.200600554 CrossRefGoogle Scholar
  115. 115.
    Huang C, Li Y, Song Y, Li Y, Liu H, Zhu D (2010) Ordered nanosphere alignment of porphyrin for the improvement of nonlinear optical properties. Adv Mater 22:3532–3536. doi:10.1002/adma.200904421 CrossRefGoogle Scholar
  116. 116.
    Jiu T, Li Y, Gan H, Li Y, Liu H, Wang S, Zhou W, Wang C, Li X, Liu X, Zhu D (2007) Synthesis of oligo(p-phenylene vinylene)-porphyrin-oligo(p-phenylene vinylene) triads as antenna molecules for energy transfer. Tetrahedron 63:232–240. doi:10.1016/j.tet.2006.10.029 CrossRefGoogle Scholar
  117. 117.
    Huang C, Li Y, Yang Je, Cheng N, Liu H, Li Y (2010) Construction of multidimensional nanostructures by self-assembly of a porphyrin analogue. Chem Commun 46:3161–3163. doi:10.1039/b927059k CrossRefGoogle Scholar
  118. 118.
    Lu F, Xiao S, Li Y, Liu H, Li H, Zhuang J, Liu Y, Wang N, He X, Li X, Gan L, Zhu D (2004) Synthesis and chemical properties of conjugated polyacetylenes having pendant fullerene and/or porphyrin units. Macromolecules 37:7444–7450. doi:10.1021/ma0490045 CrossRefGoogle Scholar
  119. 119.
    Wang N, Li Y, Lu F, Liu Y, He X, Jiang L, Zhuang J, Li X, Li Y, Wang S, Liu H, Zhu D (2005) Fabrication of novel conjugated polymer nanostructure: porphyrins and fullerenes conjugately linked to the polyacetylene backbone as pendant groups. J Polym Sci A 43:2851–2861. doi:10.1002/pola.20757 CrossRefGoogle Scholar
  120. 120.
    Liu Y, Wang N, Li Y, Liu H, Li Y, Xiao J, Xu X, Huang C, Cui S, Zhu D (2005) A new class of conjugated polyacetylenes having perylene bisimide units and pendant fullerene or porphyrin groups. Macromolecules 38:4880–4887. doi:10.1021/ma050434k CrossRefGoogle Scholar
  121. 121.
    Huang C, Wang N, Li Y, Li C, Li J, Liu H, Zhu D (2006) A new class of conjugated polymers having porphyrin, poly(p-phenylenevinylene), and fullerene units for efficient electron transfer. Macromolecules 39:5319–5325. doi:10.1021/ma060084h CrossRefGoogle Scholar
  122. 122.
    Tan Z, Hou JH, He YJ, Zhou EJ, Yang CH, Li YF (2007) Synthesis and photovoltaic properties of a donor-acceptor double-cable polythiophene with high content of C-60 pendant. Macromolecules 40:1868–1873. doi:10.1021/ma070052+ CrossRefGoogle Scholar
  123. 123.
    Schulz GL, Holdcroft S (2008) Conjugated polymers bearing iridium complexes for triplet photovoltaic devices. Chem Mater 20:5351–5355. doi:10.1021/cm800955f CrossRefGoogle Scholar
  124. 124.
    Shao Y, Yang Y (2005) Efficient organic heterojunction photovoltaic cells based on triplet materials. Adv Mater 17:2841–2844. doi:10.1002/adma.200501297 CrossRefGoogle Scholar
  125. 125.
    Fukuzumi S, Endo Y, Imahori H (2002) A negative temperature dependence of the electron self-exchange rates of zinc porphyrin π-radical cations. J Am Chem Soc 124:10974–10975. doi:10.1021/ja026089l CrossRefGoogle Scholar
  126. 126.
    Sun Q, Dai L, Zhou X, Li L, Li Q (2007) Bilayer- and bulk-heterojunction solar cells using liquid crystalline porphyrins as donors by solution processing. Appl Phys Lett 91:253505. doi:10.1063/1.2823586 CrossRefGoogle Scholar
  127. 127.
    Zhan H, Lamare S, Ng A, Kenny T, Guernon H, Chan W-K, Djurišić AB, Harvey PD, Wong W-Y (2011) Synthesis and photovoltaic properties of new metalloporphyrin-containing polyplatinyne polymers. Macromolecules 44:5155–5167. doi:10.1021/ma2006206 CrossRefGoogle Scholar
  128. 128.
    Wu P-T, Bull T, Kim FS, Luscombe CK, Jenekhe SA (2009) Organometallic donor–acceptor conjugated polymer semiconductors: tunable optical, electrochemical, charge transport, and photovoltaic properties. Macromolecules 42:671–681. doi:10.1021/ma8016508 CrossRefGoogle Scholar
  129. 129.
    Silverman EE, Cardolaccia T, Zhao X, Kim K-Y, Haskins-Glusac K, Schanze KS (2005) The triplet state in Pt-acetylide oligomers, polymers and copolymers. Coord Chem Rev 249:1491–1500CrossRefGoogle Scholar
  130. 130.
    Clem TA, Kavulak DFJ, Westling EJ, Fréchet JMJ (2009) Cyclometalated platinum polymers: synthesis, photophysical properties, and photovoltaic performance. Chem Mater 22:1977–1987. doi:10.1021/cm9029038 CrossRefGoogle Scholar
  131. 131.
    Greenham NC, Moratti SC, Bradley DDC, Friend RH, Holmes AB (1993) Efficient light-emitting-diodes based on polymers with high electron-affinities. Nature 365:628–630. doi:10.1038/365628a0 CrossRefGoogle Scholar
  132. 132.
    Knupfer M (2003) Exciton binding energies in organic semiconductors. Appl Phys A 77:623–626. doi:10.1007/s00339-003-2182-9 CrossRefGoogle Scholar
  133. 133.
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas J-L (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952. doi:10.1021/cr050140x CrossRefGoogle Scholar
  134. 134.
    Darling SB (2008) Isolating the effect of torsional defects on mobility and band gap in conjugated polymers. J Phys Chem B 112:8891–8895. doi:10.1021/jp8017919 CrossRefGoogle Scholar
  135. 135.
    Darling SB, Sternberg M (2009) Importance of side chains and backbone length in defect modeling of poly(3-alkylthiophenes). J Phys Chem B 113:6215–6218. doi:10.1021/jp808045j CrossRefGoogle Scholar
  136. 136.
    Liu H, Zhao Q, Li Y, Liu Y, Lu F, Zhuang J, Wang S, Jiang L, Zhu D, Yu D, Chi L (2005) Field emission properties of large-area nanowires of organic charge-transfer complexes. J Am Chem Soc 127:1120–1121. doi:10.1021/ja0438359 CrossRefGoogle Scholar
  137. 137.
    Cui S, Li YL, Guo YB, Liu HBA, Song YL, Xu JL, Lv J, Zhu M, Zhu DB (2008) Fabrication and field-emission properties of large-area nanostructures of the organic charge-transfer complex Cu-TCNAQ. Adv Mater 20:309. doi:10.1002/adma.200701617 CrossRefGoogle Scholar
  138. 138.
    Liu H, Li Y, Jiang L, Luo H, Xiao S, Fang H, Li H, Zhu D, Yu D, Xu J, Xiang B (2002) Imaging as-grown [60]fullerene nanotubes by template technique. J Am Chem Soc 124:13370–13371. doi:10.1021/ja0280527 CrossRefGoogle Scholar
  139. 139.
    Guo Y, Tang Q, Liu H, Zhang Y, Li Y, Hu W, Wang S, Zhu D (2008) Light-controlled organic/inorganic P–N junction nanowires. J Am Chem Soc 130:9198–9199. doi:10.1021/ja8021494 CrossRefGoogle Scholar
  140. 140.
    Guo Y, Li Y, Li Y, Liu H, Li G, Zhao Y, Lin H (2011) Construction of heterojunction nanowires from polythiophene/polypyrrole for applications as efficient switches. Chem Asian J 6:98–102. doi:10.1002/asia.201000400 Google Scholar
  141. 141.
    Zuo Z, Guo Y, Li Y, Lv J, Liu H, Xu J, Li Y (2009) Construction of large-scale highly ordered macroporous monoliths of pi-conjugated polymers. Macromol Rapid Commun 30:1940–1944. doi:10.1002/marc.200900411 CrossRefGoogle Scholar
  142. 142.
    Gan H, Liu H, Li Y, Zhao Q, Li Y, Wang S, Jiu T, Wang N, He X, Yu D, Zhu D (2005) Fabrication of polydiacetylene nanowires by associated self-polymerization and self-assembly processes for efficient field emission properties. J Am Chem Soc 127:12452–12453. doi:10.1021/ja053352k CrossRefGoogle Scholar
  143. 143.
    Guo Y, Zhang Y, Liu H, Lai S-W, Li Y, Li Y, Hu W, Wang S, Che C-M, Zhu D (2010) Assembled organic/inorganic p–n junction interface and photovoltaic cell on a single nanowire. J Phys Chem L 1:327–330. doi:10.1021/jz9002058 CrossRefGoogle Scholar
  144. 144.
    Yang X, van Duren JKJ, Janssen RAJ, Michels MAJ, Loos J (2004) Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37:2151–2158. doi:10.1021/ma035620+ CrossRefGoogle Scholar
  145. 145.
    Shikler R, Chiesa M, Friend RH (2006) Photovoltaic performance and morphology of polyfluorene blends: the influence of phase separation evolution. Macromolecules 39:5393–5399. doi:10.1021/ma060421m CrossRefGoogle Scholar
  146. 146.
    McNeill CR, Westenhoff S, Groves C, Friend RH, Greenham NC (2007) Influence of nanoscale phase separation on the charge generation dynamics and photovoltaic performance of conjugated polymer blends: balancing charge generation and separation. J Phys Chem C 111:19153–19160. doi:10.1021/jp075904m CrossRefGoogle Scholar
  147. 147.
    Thomas EL, Lescanec RL (1994) Phase morphology in block-copolymer systems. Phil Trans R Soc Lond Ser A 348:149–166CrossRefGoogle Scholar
  148. 148.
    Lee M, Cho B-K, Zin W-C (2001) Supramolecular structures from rod–coil block copolymers. Chem Rev 101:3869–3892. doi:10.1021/cr0001131 CrossRefGoogle Scholar
  149. 149.
    Segalman RA, McCulloch B, Kirmayer S, Urban JJ (2009) Block copolymers for organic optoelectronics. Macromolecules 42:9205–9216. doi:10.1021/ma901350w CrossRefGoogle Scholar
  150. 150.
    Botiz I, Darling SB (2009) Self-assembly of poly(3-hexylthiophene)-block-polylactide block copolymer and subsequent incorporation of electron acceptor material. Macromolecules 42:8211–8217. doi:10.1021/ma901420h CrossRefGoogle Scholar
  151. 151.
    Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280:1741–1744. doi:10.1126/science.280.5370.1741 CrossRefGoogle Scholar
  152. 152.
    Shrotriya V, Ouyang J, Tseng RJ, Li G, Yang Y (2005) Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films. Chem Phys Lett 411:138–143CrossRefGoogle Scholar
  153. 153.
    Boudouris BW, Frisbie CD, Hillmyer MA (2007) Nanoporous poly(3-alkylthiophene) thin films generated from block copolymer templates. Macromolecules 41:67–75. doi:10.1021/ma071626d CrossRefGoogle Scholar
  154. 154.
    Ren G, Wu P-T, Jenekhe SA (2010) Solar cells based on block copolymer semiconductor nanowires: effects of nanowire aspect ratio. ACS Nano 5:376–384. doi:10.1021/nn1017632 CrossRefGoogle Scholar
  155. 155.
    Tao Y, McCulloch B, Kim S, Segalman RA (2009) The relationship between morphology and performance of donor–acceptor rod-coil block copolymer solar cells. Soft Matter 5:4219–4230CrossRefGoogle Scholar
  156. 156.
    Zhang Q, Cirpan A, Russell TP, Emrick T (2009) Donor–acceptor poly(thiophene-block-perylene diimide) copolymers: synthesis and solar cell fabrication. Macromolecules 42:1079–1082. doi:10.1021/ma801504e CrossRefGoogle Scholar
  157. 157.
    Dante M, Yang C, Walker B, Wudl F, Nguyen T-Q (2010) Self-assembly and charge-transport properties of a polythiophene–fullerene triblock copolymer. Adv Mater 22:1835–1839. doi:10.1002/adma.200902696 CrossRefGoogle Scholar
  158. 158.
    Stalmach U, de Boer B, Videlot C, van Hutten PF, Hadziioannou G (2000) Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques. J Am Chem Soc 122:5464–5472. doi:10.1021/ja000160a CrossRefGoogle Scholar
  159. 159.
    Barrau S, Heiser T, Richard F, Brochon C, Ngov C, van de Wetering K, Hadziioannou G, Anokhin DV, Ivanov DA (2008) Self-assembling of novel fullerene-grafted donor–acceptor rod–coil block copolymers. Macromolecules 41:2701–2710. doi:10.1021/ma7022099 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations