Polymer Bulletin

, Volume 69, Issue 1, pp 29–47 | Cite as

Synthesis, properties, and electrical memory characteristics of new diblock copolymers of polystyrene-block-poly(styrene-pyrene)

Original Paper

Abstract

In this study, we report the synthesis, properties, and electrical memory characteristics of new diblock copolymers, polystyrene-block-poly(styrene-pyrene) (PS-b-P(St-Py)), prepared by combining atom transfer radical polymerization and Suzuki coupling reaction. The effects of the St–Py block chain length on the electronic energy level, photophysical properties, and memory characteristics were explored. The PS42-b-P(St-Py)108 and PS66-b-P(St-Py)67 devices exhibited a dynamic random access memory characteristics with different turn-on threshold voltages of −2.7 and −3.1 V, respectively. Moreover, these memory devices showed a high ON/OFF current ratio of 109 and were electrically stable for at least 104 s in both ON and OFF states. However, the PS113-b-P(St-Py)45-based device displayed an insulating state in a low current variation of 10−12 to 10−14 A, which had a short St–Py block length. The mechanism of the switching behavior was explained by the charge hopping conduction between the pyrene units with coexisting charge-trapping environment. The volatility of the memory effect was depended on the ability of charge trapping/back transferring of trapped charge. The present study suggested that the electrical memory characteristics could be efficiently tuned through the block ratio between insulating segment and pendant-conjugated segment of the diblock polymers.

Keywords

Diblock copolymer Pyrene Synthesis Electrical memory Charge transporting 

Supplementary material

289_2011_686_MOESM1_ESM.doc (730 kb)
Supplementary material 1 (DOC 729 kb)

References

  1. 1.
    Scott JC, Bozano LD (2007) Nonvolatile memory elements based on organic materials. Adv Mater 19:1452–1463CrossRefGoogle Scholar
  2. 2.
    Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K (1998) A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392:796–798CrossRefGoogle Scholar
  3. 3.
    Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100:1777–1788CrossRefGoogle Scholar
  4. 4.
    Hagen R, Bieringer T (2001) Photoaddressable polymers for optical data storage. Adv Mater 13:1805–1810CrossRefGoogle Scholar
  5. 5.
    Möller S, Perlov C, Jackson W, Taussig C, Forrest SR (2003) A polymer/semiconductor write-once read-many-times memory. Nature 426:166–169CrossRefGoogle Scholar
  6. 6.
    Rozenberg MJ, Inoue IH, Sanchez MJ (2004) Nonvolatile memory with multilevel switching: a basic model. Phys Rev Lett 92:178302CrossRefGoogle Scholar
  7. 7.
    Wang J-P (2005) Magnetic Data Storage Tilting for the top. Nat Mater 4:191–192CrossRefGoogle Scholar
  8. 8.
    Kapetanakis E, Douvas AM, Velessiotis D, Makarona E, Argitis P, Glezos N, Normand P (2008) Molecular storage elements for proton memory devices. Adv Mater 20:4568–4574CrossRefGoogle Scholar
  9. 9.
    Ling QD, Liaw DJ, Zhu C, Chan DSH, Kang ET, Neoh KG (2008) Polymer electronic memories: materials, devices and mechanisms. Prog Polym Sci 33:917–978CrossRefGoogle Scholar
  10. 10.
    Li H, Xu Q, Li N, Sun R, Ge J, Lu J, Gu H, Yan F (2010) A small-molecule-based ternary data-storage device. J Am Chem Soc 132:5542–5543CrossRefGoogle Scholar
  11. 11.
    Yang Y, Ouyang J, Ma L, Tseng RJH, Chu CW (2006) Electrical switching and bistability in organic/polymeric thin films and memory devices. Adv Funct Mater 16:1001–1014CrossRefGoogle Scholar
  12. 12.
    Chen J, Ma D (2005) Single-layer organic memory devices based on N,N′-di(naphthalene-l-yl)-N,N′-diphenyl-benzidine. Appl Phys Lett 87:023505CrossRefGoogle Scholar
  13. 13.
    Lin J, Ma D (2008) The morphology control of pentacene for write-once-read-many-times memory devices. J Appl Phys 103:024507CrossRefGoogle Scholar
  14. 14.
    Tu CH, Lai YS, Kwong DL (2006) Memory effect in the current–voltage characteristic of 8-hydroquinoline aluminum salt films. IEEE Electron Device Lett 27:354–356CrossRefGoogle Scholar
  15. 15.
    Ouisse T, Stéphan O (2004) Electrical bistability of polyfluorene devices. Org Electron 5:251–256CrossRefGoogle Scholar
  16. 16.
    Ling QD, Song Y, Lim SL, Teo EYH, Tan YP, Zhu C, Chan DSH, Kwong DL, Kang ET, Neoh KG (2006) A dynamic random access memory based on a conjugated copolymer containing electron-donor and -acceptor moieties. Angew Chem Int Ed 45:2947–2951CrossRefGoogle Scholar
  17. 17.
    Baek S, Lee D, Kim J, Hong SH, Kim O, Ree M (2007) Novel digital nonvolatile memory devices based on semiconducting polymer thin films. Adv Funct Mater 17:2637–2644CrossRefGoogle Scholar
  18. 18.
    Kim TW, Oh SH, Choi H, Wang G, Hwang H, Kim D-Y, Lee T (2008) Reversible switching characteristics of polyfluorene-derivative single layer film for nonvolatile memory devices. Appl Phys Lett 92:253308CrossRefGoogle Scholar
  19. 19.
    Lee TJ, Park S, Hahm SG, Kim DM, Kim K, Kim J, Kwon W, Kim Y, Chang T, Ree M (2009) Programmable digital memory characteristics of nanoscale thin films of a fully conjugated polymer. J Phys Chem C 113:3855–3861CrossRefGoogle Scholar
  20. 20.
    Ling QD, Chang FC, Song Y, Zhu CX, Liaw DJ, Chan DSH, Kang ET, Neoh KG (2006) Synthesis and dynamic random access memory behavior of a functional polyimide. J Am Chem Soc 128:8732–8733CrossRefGoogle Scholar
  21. 21.
    Lee TJ, Chang C-W, Hahm SG, Kim K, Park S, Kim DM, Kim J, Kwon W-S, Liou G-S, Ree M (2009) Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide. Nanotechnology 20:135204CrossRefGoogle Scholar
  22. 22.
    You NH, Chueh CC, Liu CL, Ueda M, Chen WC (2009) Synthesis and memory device characteristics of new sulfur donor containing polyimides. Macromolecules 42:4456–4463CrossRefGoogle Scholar
  23. 23.
    Hahm SG, Choi S, Hong SH, Lee TJ, Park S, Kim DM, Kwon WS, Kim K, Kim O, Ree M (2008) Novel rewritable, non-volatile memory devices based on thermally and dimensionally stable polyimide thin films. Adv Funct Mater 18:3276–3282CrossRefGoogle Scholar
  24. 24.
    Hahm SG, Choi S, Hong SH, Lee TJ, Park S, Kim DM, Kim JC, Kwon W, Kim K, Kim MJ, Kim O, Ree M (2009) Electrically bistable nonvolatile switching devices fabricated with a high performance polyimide bearing diphenylcarbamyl moieties. J Mater Chem 19:2207–2214CrossRefGoogle Scholar
  25. 25.
    Huang CM, Liu YS, Chen CC, Wei KH, Sheu JT (2008) Electrical bistable memory device based on a poly(styrene-b-4-vinylpyridine) nanostructured diblock copolymer thin film. Appl Phys Lett 93:203303CrossRefGoogle Scholar
  26. 26.
    Jian L, Dongge M (2008) Realization of write-once-read-many-times memory devices based on poly(N-vinylcarbazole) by thermally annealing. Appl Phys Lett 93:093505CrossRefGoogle Scholar
  27. 27.
    Lai YS, Tu CH, Kwong DL, Chen JS (2006) Charge-transport characteristics in bistable resistive poly(N-vinylcarbazole) films. IEEE Electron Device Lett 27:451–453CrossRefGoogle Scholar
  28. 28.
    Lai YS, Tu CH, Kwong DL, Chen JS (2005) Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications. Appl Phys Lett 87:122101CrossRefGoogle Scholar
  29. 29.
    Ling QD, Lim SL, Song Y, Zhu CX, Chan DSH, Kang ET, Neoh KG (2006) Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C60. Langmuir 23:312–319CrossRefGoogle Scholar
  30. 30.
    Teo EYH, Ling QD, Song Y, Tan YP, Wang W, Kang ET, Chan DSH, Zhu C (2006) Non-volatile WORM memory device based on an acrylate polymer with electron donating carbazole pendant groups. Org Electron 7:173–180CrossRefGoogle Scholar
  31. 31.
    Ouyang J, Chu CW, Szmanda CR, Ma L, Yang Y (2004) Programmable polymer thin film and non-volatile memory device. Nat Mater 3:918–922CrossRefGoogle Scholar
  32. 32.
    Tseng RJ, Baker CO, Shedd B, Huang J, Kaner RB, Ouyang J, Yang Y (2007) Charge transfer effect in the polyaniline-gold nanoparticle memory system. Appl Phys Lett 90:053101CrossRefGoogle Scholar
  33. 33.
    Lin HT, Pei Z, Chen YJ (2007) Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device. IEEE Electron Device Lett 28:569–571CrossRefGoogle Scholar
  34. 34.
    Kanwal A, Chhowalla M (2006) Stable, three layered organic memory devices from C60 molecules and insulating polymers. Appl Phys Lett 89:203103CrossRefGoogle Scholar
  35. 35.
    Laiho A, Majumdar HS, Baral JK, Jansson F, Osterbacka R, Ikkala O (2008) Tuning the electrical switching of polymer/fullerene nanocomposite thin film devices by control of morphology. Appl Phys Lett 93:203309CrossRefGoogle Scholar
  36. 36.
    Majumdar HS, Baral JK, Österbacka R, Ikkala O, Stubb H (2005) Fullerene-based bistable devices and associated negative differential resistance effect. Org Electron 6:188–192CrossRefGoogle Scholar
  37. 37.
    Baral JK, Majumdar HS, Laiho A, Jiang H, Kauppinen EI, Ras RHA, Ruokolainen J, Ikkala O, Osterbacka R (2008) Organic memory using [6, 6]-phenyl-C61 butyric acid methyl ester: morphology, thickness and concentration dependence studies. Nanotechnology 19:035203CrossRefGoogle Scholar
  38. 38.
    Lim SL, Ling Q, Teo EYH, Zhu CX, Chan DSH, Kang ET, Neoh KG (2007) Conformation-induced electrical bistability in non-conjugated polymers with pendant carbazole moieties. Chem Mater 19:5148–5157CrossRefGoogle Scholar
  39. 39.
    Fang YK, Liu CL, Chen WC (2011) New random copolymers with pendant carbazole donor and 1,3,4-oxadiazole acceptor for high performance memory device applications. J Mater Chem 21:4778–4786CrossRefGoogle Scholar
  40. 40.
    Fang YK, Liu CL, Yang GY, Chen PC, Chen WC (2011) New donor-acceptor random copolymers with pendant triphenylamine and 1,3,4-oxadiazole for high performance memory device applications. Macromolecules 44:2604–2612CrossRefGoogle Scholar
  41. 41.
    Liu CL, Hsu JC, Chen WC, Sugiyama K, Hirao A (2009) Non-volatile memory devices based on poly(styrene) derivatives with electron-donating oligofluorene pendant moieties. ACS Appl Mater Interface 1:1974–1979CrossRefGoogle Scholar
  42. 42.
    Yun C, You J, Kim J, Huh J, Kim E (2009) Photochromic fluorescence switching from diarylethenes and its applications. J Photochem Photobiol C 10:111–129CrossRefGoogle Scholar
  43. 43.
    Yoo J, Kwon T, Sarwade BD, Kim Y, Kim E (2007) Multistate fluorescence switching of s-triazine-bridged p-phenylene vinylene polymers. Appl Phys Lett 91:241107CrossRefGoogle Scholar
  44. 44.
    Kim Y, Kim E, Clavier G, Audebert P (2006) New tetrazine-based fluoroelectrochromic window; modulation of the fluorescence through applied potential. Chem Commun 3612–3614Google Scholar
  45. 45.
    You J, Heo JS, Lee J, Kim HS, Kim HO, Kim E (2009) A fluorescent polymer for patterning of mesenchymal stem cells. Macromolecules 42:3326–3332CrossRefGoogle Scholar
  46. 46.
    Nagaki A, Takabayashi N, Tomida Y, Yoshida J-I (2009) Synthesis of unsymmetrically substituted biaryls via sequential lithiation of dibromobiaryls using integrated microflow systems. Beilstein J Org Chem 5. doi:10.3762/bjoc.5.16

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Polymer Science and Engineering, National Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.Department of Chemical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations