Polymer Bulletin

, Volume 68, Issue 3, pp 829–845 | Cite as

Phosphonate-functionalized polyfluorene and its application in organic optoelectronic devices

Original Paper


Conjugated polar polymers, in which the conjugated backbones are chemically anchored with functional polar side groups, can be processed with water/alcohol solvents, and thus multilayered device architectures can be easily realized via sequential solution processing of the toluene-soluble emissive polymer and alcohol-soluble electron-transporting polymer without intermixing. Regarding their use in organic optoelectronic devices, the success in achieving efficient charge injection and intimate contact between metal electrodes and organic semiconductors is very vital for enhancing the device performance. In this short review, it gives a brief review to neutral alcohol-soluble phosphonate-functionalized polyfluorene, mainly concerning the electronic structure at the phosphonate-functionalized polyfluorene/aluminum cathode interface and its successful application in multilayered polymer optoelectronic devices including polymer light-emitting diodes and polymer solar cells.


Conjugated polymer Phosphonate group Interfacial electronic structure Optoelectronic devices 


  1. 1.
    Wong WY, Ho CL (2009) Heavy metal organometallic electrophosphors derived from multi-component chromophores. Coord Chem Rev 253:1709CrossRefGoogle Scholar
  2. 2.
    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Luessem B, Leo K (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234CrossRefGoogle Scholar
  3. 3.
    Thompson BC, Frechet JMJ (2008) Organic photovoltaics—polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58CrossRefGoogle Scholar
  4. 4.
    Meerholz K (2005) Device physics—enlightening solutions. Nature 437:327CrossRefGoogle Scholar
  5. 5.
    Gong X, Wang S, Moses D, Bazan GC, Heeger AJ (2005) Multilayer polymer light-emitting diodes: white-light emission with high efficiency. Adv Mater 17:2053CrossRefGoogle Scholar
  6. 6.
    Zhang B, Li W, Yang J, Fu Y, Xie Z, Zhang S, Wang L (2009) Performance enhancement of polymer light-emitting diodes by using ultrathin fluorinated polyimide modifying the surface of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate). J Phys Chem C 113:7898CrossRefGoogle Scholar
  7. 7.
    Gather MC, Koehnen A, Falcou A, Becker H, Meerholz K (2007) Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography. Adv Funct Mater 17:191CrossRefGoogle Scholar
  8. 8.
    Png RQ, Chia PJ, Tang JC, Liu B, Sivaramakrishnan S, Zhou M, Khong SH, Chan HSO, Burroughes JH, Chua LL, Friend RH, Ho PKH (2010) High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains. Nat Mater 9:152CrossRefGoogle Scholar
  9. 9.
    Yan H, Lee P, Armstrong NR, Graham A, Evmenenko GA, Dutta P, Marks TJ (2005) High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. J Am Chem Soc 127:3172CrossRefGoogle Scholar
  10. 10.
    Huang F, Niu YH, Zhang Y, Ka JW, Liu MS, Jen AKY (2007) A conjugated, neutral surfactant as electron-injection material for high-efficiency polymer light-emitting diodes. Adv Mater 19:2010CrossRefGoogle Scholar
  11. 11.
    Zhang B, Qin C, Niu X, Xie Z, Cheng Y, Wang L, Li X (2010) On the origin of efficient electron injection at phosphonate-functionalized polyfluorene/aluminum interface in efficient polymer light-emitting diodes. Appl Phys Lett 97:043506CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Xie Z, Qin C, Qu Y, Geng Y, Wang L (2009) Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer. Sol Energy Mater Sol C 93:604CrossRefGoogle Scholar
  13. 13.
    Wu HB, Huang F, Peng JB, Cao Y (2005) High-efficiency electron injection cathode of Au for polymer light-emitting devices. Org Electron 6:118CrossRefGoogle Scholar
  14. 14.
    Zhou G, Qian G, Ma L, Cheng YX, Xie ZY, Wang LX, Jing XB, Wang FS (2005) Polyfluorenes with phosphonate groups in the side chains as chemosensors and electroluminescent materials. Macromolecules 38:5416CrossRefGoogle Scholar
  15. 15.
    Ma H, Yip H-L, Huang F, Jen AKY (2010) Interface engineering for organic electronics. Adv Funct Mater 20:1371CrossRefGoogle Scholar
  16. 16.
    Huang F, Wu H, Cao Y (2010) Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem Soc Rev 39:2500CrossRefGoogle Scholar
  17. 17.
    Hoven CV, Garcia A, Bazan GC, Nguyen T-Q (2008) Recent applications of conjugated polyelectrolytes in optoelectronic devices. Adv Mater 20:3793CrossRefGoogle Scholar
  18. 18.
    Hoven CV, Yang RQ, Garcia A, Crockett V, Heeger AJ, Bazan GC, Nguyen TQ (2008) Electron injection into organic semiconductor devices from high work function cathodes. Proc Natl Acad Sci USA 105:12730CrossRefGoogle Scholar
  19. 19.
    Chen LM, Xu Z, Hong Z, Yang Y (2010) Interface investigation and engineering—achieving high performance polymer photovoltaic devices. J Mater Chem 20:2575CrossRefGoogle Scholar
  20. 20.
    Thomas SW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339CrossRefGoogle Scholar
  21. 21.
    Jiang H, Taranekar P, Reynolds JR, Schanze KS (2009) Conjugated polyelectrolytes: synthesis, photophysics, and applications. Angew Chem Int Ed 48:4300CrossRefGoogle Scholar
  22. 22.
    Huang F, Wu HB, Wang D, Yang W, Cao Y (2004) Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater 16:708CrossRefGoogle Scholar
  23. 23.
    Zhou G, Geng YH, Cheng YX, Xie ZY, Wang LX, Jing XB, Wang FS (2006) Efficient blue electroluminescence from neutral alcohol-soluble polyfluorenes with aluminum cathode. Appl Phys Lett 89:233501CrossRefGoogle Scholar
  24. 24.
    Tung RT (2001) Recent advances in Schottky barrier concepts. Mater Sci Eng R 35:1CrossRefGoogle Scholar
  25. 25.
    Parker ID, Cao Y, Yang CY (1999) Lifetime and degradation effects in polymer light-emitting diodes. J Appl Phys 85:2441CrossRefGoogle Scholar
  26. 26.
    Lee TW, Kim MG, Park SH, Kim SY, Kwon O, Noh T, Park JJ, Choi TL, Park JH, Chin BD (2009) Designing a stable cathode with multiple layers to improve the operational lifetime of polymer light-emitting diodes. Adv Funct Mater 19:1863CrossRefGoogle Scholar
  27. 27.
    Choong V, Park Y, Shivaparan N, Tang CW, Gao Y (1997) Deposition-induced photoluminescence quenching of tris-(8-hydroxyquinoline) aluminum. Appl Phys Lett 71:1005CrossRefGoogle Scholar
  28. 28.
    Choong V, Park Y, Gao Y, Wehrmeister T, Mullen K, Hsieh BR, Tang CW (1996) Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition. Appl Phys Lett 69:1492CrossRefGoogle Scholar
  29. 29.
    Niu X, Qin C, Zhang B, Yang J, Xie Z, Cheng Y, Wang L (2007) Efficient multilayer white polymer light-emitting diodes with aluminum cathodes. Appl Phys Lett 90:203513CrossRefGoogle Scholar
  30. 30.
    Vaynzof Y, Dennes TJ, Schwartz J, Kahn A (2008) Enhancement of electron injection into a light-emitting polymer from an aluminum oxide cathode modified by a self-assembled monolayer. Appl Phys Lett 93:103305CrossRefGoogle Scholar
  31. 31.
    Vioux A, Le Bideau J, Mutin PH, Leclercq D (2004) Hybrid organic-inorganic materials based on organophosphorus derivatives. Top Curr Chem 232:145Google Scholar
  32. 32.
    Bardecker JA, Ma H, Kim T, Huang F, Liu MS, Cheng YJ, Ting G, Jen AKY (2008) Self-assembled electroactive phosphonic acids on ITO: maximizing hole-injection in polymer light-emitting diodes. Adv Funct Mater 18:3964CrossRefGoogle Scholar
  33. 33.
    Le QT, Yan L, Gao YG, Mason MG, Giesen DJ, Tang CW (2000) Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces. J Appl Phys 87:375CrossRefGoogle Scholar
  34. 34.
    Oyamada T, Yoshizaki H, Sasabe H, Adachi C (2004) Efficient electron injection characteristics of triazine derivatives for transparent OLEDs (TOLEDs). Chem Lett 33:1034CrossRefGoogle Scholar
  35. 35.
    Huang JS, Xu Z, Yang Y (2007) Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate. Adv Funct Mater 17:1966CrossRefGoogle Scholar
  36. 36.
    Huang JS, Hou WJ, Li JH, Li G, Yang Y (2006) Improving the power efficiency of white light-emitting diode by doping electron transport material. Appl Phys Lett 89:133509CrossRefGoogle Scholar
  37. 37.
    Huang JS, Li G, Wu E, Xu QF, Yang Y (2006) Achieving high-efficiency polymer white-light-emitting devices. Adv Mater 18:114CrossRefGoogle Scholar
  38. 38.
    Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913CrossRefGoogle Scholar
  39. 39.
    Zhang B, Qin C, Ding J, Chen L, Xie Z, Cheng Y, Wang L (2010) High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer. Adv Funct Mater 20:2951CrossRefGoogle Scholar
  40. 40.
    Liu J, Chen L, Shao SY, Xie ZY, Cheng YX, Geng YH, Wang LX, Jing XB, Wang FS (2007) Three-color white electroluminescence from a single polymer system with blue, green and red dopant units as individual emissive species and polyfluorene as individual polymer host. Adv Mater 19:4224CrossRefGoogle Scholar
  41. 41.
    Chen SH, Su AC, Su CH, Chen SA (2005) Crystalline forms and emission behavior of poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 38:379CrossRefGoogle Scholar
  42. 42.
    Kreouzis T, Poplavskyy D, Tuladhar SM, Campoy-Quiles M, Nelson J, Campbell AJ, Bradley DDC (2006) Temperature and field dependence of hole mobility in poly(9,9-dioctylfluorene). Phys Rev B 73:235201CrossRefGoogle Scholar
  43. 43.
    Hung LS, Zhang RQ, He P, Mason G (2002) Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes. J Phys D 35:103CrossRefGoogle Scholar
  44. 44.
    Chen L, Zhang B, Cheng Y, Xie Z, Wang L, Jing X, Wang F (2010) Pure and saturated red electroluminescent polyfluorenes with dopant/host system and PLED efficiency/color purity trade-offs. Adv Funct Mater 20:3143CrossRefGoogle Scholar
  45. 45.
    Ma Z, Ding J, Zhang B, Mei C, Cheng Y, Xie Z, Wang L, Jing X, Wang F (2010) Red-emitting polyfluorenes grafted with quinoline-based iridium complex: “simple polymeric chain, unexpected high efficiency”. Adv Funct Mater 20:138CrossRefGoogle Scholar
  46. 46.
    Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288CrossRefGoogle Scholar
  47. 47.
    Zhao Y, Xie Z, Qu Y, Geng Y, Wang L (2008) Effects of thermal annealing on polymer photovoltaic cells with buffer layers and in situ formation of interfacial layer for enhancing power conversion efficiency. Synth Met 158:908CrossRefGoogle Scholar
  48. 48.
    Zhang F, Ceder M, Inganas O (2007) Enhancing the photovoltage of polymer solar cells by using a modified cathode. Adv Mater 19:1835CrossRefGoogle Scholar
  49. 49.
    Na S-I, Oh S-H, Kim S-S, Kim D-Y (2009) Efficient organic solar cells with polyfluorene derivatives as a cathode interfacial layer. Org Electron 10:496CrossRefGoogle Scholar
  50. 50.
    Luo J, Wu H, He C, Li A, Yang W, Cao Y (2009) Enhanced open-circuit voltage in polymer solar cells. Appl Phys Lett 95:043301CrossRefGoogle Scholar
  51. 51.
    Seo JH, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger AJ, Bazan GC (2011) Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J Am Chem Soc 133:8416CrossRefGoogle Scholar
  52. 52.
    Ye T, Zhu M, Chen J, Ma D, Yang C, Xie W, Liu S (2011) Efficient multilayer electrophosphorescence white polymer light-emitting diodes with aluminum cathodes. Org Electron 12:154CrossRefGoogle Scholar
  53. 53.
    Xu XF, Cai WZ, Chen JW, Cao Y (2011) Conjugated polyelectrolytes and neutral polymers with poly(2,7-carbazole) backbone: synthesis, characterization, and photovoltaic application. J Polym Sci Pol Chem 49:1263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations