Polymer Bulletin

, 67:1285 | Cite as

Preparation of superabsorbent hydrogels from poly(aspartic acid) by chemical crosslinking

Original Paper


Modified poly(aspartic acid)s containing pendant allyl groups were synthesized by the reaction of poly(succinimide) with an allyl amine in dimethylformamide. The contents of the allyl groups in the poly(aspartic acid) ranged from 2 to 17.4% confirmed by 1H NMR. Hydrogels were prepared using modified poly(aspartic acid) by chemical crosslinking using redox radical initiators including ammonium persulfate and potassium peroxodisulfate. The morphologies of the poly(aspartic acid)-based hydrogels were investigated by scanning electron microscopy (SEM). The water-absorbent experiments were carried out, and revealed that lightly cross-linked hydrogels resulted in effective water-absorbent properties. These results suggested that allyl group-modified poly(aspartic acid)s are useful in providing biodegradable hydrogels.


Redox radical initiation Cross-linking Poly(aspartic acid) Water-absorbent Hydrogels 



We thank Mr. Noriaki Kaneko (Micro Tech inc.) for SEM experiments. Mitsubishi Chemicals Corporation is deeply acknowledged for donation of poly(succinimide).


  1. 1.
    Wu JH, Wei YL, Lin JM, Lin SB (2003) Polym Int 52:1909CrossRefGoogle Scholar
  2. 2.
    Suo AL, Qian JM, Yao Y, Zhang WG (2007) J Appl Polym Sci 103:1382CrossRefGoogle Scholar
  3. 3.
    Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Eur Polym J 40:1399CrossRefGoogle Scholar
  4. 4.
    Murakami S, Aoki N (2006) Biomacromolecules 7:2122CrossRefGoogle Scholar
  5. 5.
    Kakuchi T, Kusuno A, Shibata M, Nakato T (1999) Macromol Rapid Commun 20:410CrossRefGoogle Scholar
  6. 6.
    Kunioka M (2004) Macromol Biosci 4:324CrossRefGoogle Scholar
  7. 7.
    Cao H, Zhu J, Su H, Fang L, Tan T (2009) J Appl Polym Sci 113:327CrossRefGoogle Scholar
  8. 8.
    Cao H, Ma X, Sun S, Su H, Tan T (2010) Polym Bull 64:623CrossRefGoogle Scholar
  9. 9.
    Moon JR, Park YH, Kim J (2009) J Appl Polym Sci 111:998Google Scholar
  10. 10.
    Kakuchi T, Shibata M, Matsunami S, Nakato T, Tomida M (1997) J Polym Sci Polym Chem 35:285CrossRefGoogle Scholar
  11. 11.
    Tomida M, Nakato T, Kuramochi M, Shibata M, Matsunami S, Kakuchi T (1996) Polymer 37:4435CrossRefGoogle Scholar
  12. 12.
    Tomida M, Nakato T, Matsunami S, Kakuchi T (1997) Polymer 38:4733CrossRefGoogle Scholar
  13. 13.
    Nakato T, Tomida M, Kusuno A, Shibata M, Kakuchi T (1998) Polym Bull 40:647CrossRefGoogle Scholar
  14. 14.
    Nakato T, Yoshitake M, Matsubara K, Tomida M, Kakuchi T (1998) Macromolecules 31:2107CrossRefGoogle Scholar
  15. 15.
    Nakato T, Tomida M, Suwa M, Morishima Y, Kusuno A, Kakuchi T (2000) Polym Bull 44:385CrossRefGoogle Scholar
  16. 16.
    Fukuoka T, Uyama H, Kakuchi T, Kobayashi S (2002) Macromol Rapid Commun 23:698CrossRefGoogle Scholar
  17. 17.
    Tachibana Y, Kurisawa M, Uyama H, Kakuchi T, Kobayashi S (2003) Chem Commun, p 106Google Scholar
  18. 18.
    Tachibana Y, Kurisawa M, Uyama H, Kakuchi T, Kobayashi S (2003) Chem Lett 32:374CrossRefGoogle Scholar
  19. 19.
    Bicak N, Senkal BF, Gazi M (2004) Des Monomers Polym 7:261CrossRefGoogle Scholar
  20. 20.
    Rokicki G, Szymanska E (1998) J Appl Polym Sci 70:2031CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Asahikawa National College of TechnologyAsahikawaJapan
  2. 2.Division of Biochemistry and Macromolecular Chemistry, Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations