Polymer Bulletin

, Volume 66, Issue 8, pp 1125–1136 | Cite as

Preparation of superparamagnetic β-cyclodextrin-functionalized composite nanoparticles with core–shell structures

  • Ruixue Li
  • Shumei Liu
  • Jianqing Zhao
  • Hideyuki Otsuka
  • Atsushi Takahara
Original Paper


In this article, we report an original and feasible protocol for the preparation of superparamagnetic β-cyclodextrin-functionalized composite nanoparticles with core–shell structures via cross linking reaction on the surface of carboxymethyl β-cyclodextrin-modified magnetite (Fe3O4) nanoparticles by using epichlorohydrin as a crosslinking agent. The structure and morphology of the prepared composite nanoparticles were studied by Fourier transform infrared spectrometry, X-ray diffraction measurement, transmission electron microscopy and the thermogravimetric analysis. The results show that the prepared roughly spherical composite nanoparticles (diameter about 10–20 nm) with core–shell structures turned out to be magnetite nanoparticles surface-surrounded by a layer of cross-linked CM-β-cyclodextrin polymer. Results of vibrating sample magnetometry testing and inclusive behaviour studying confirmed the superparamagnetism with saturation magnetization value of 52.0 emu/g in an external applied magnetic field of 20000 Oe and inclusion functionality of the composite nanoparticles consisting of magnetite cores and β-cyclodextrin moiety, which implies very important applications in targeting drug delivery technology and separation for specific substances.


β-Cyclodextrin Magnetite (Fe3O4) nanoparticles Composite nanoparticles 


  1. 1.
    Szejitli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753CrossRefGoogle Scholar
  2. 2.
    Dodziuk H (2006) Cyclodextrins and their complexes: chemistry, analytical methods applications. Wiley-VCH, New YorkCrossRefGoogle Scholar
  3. 3.
    Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035CrossRefGoogle Scholar
  4. 4.
    Szejitli J (1998) Cyclodextrin technology, 1st edn. Kluwer Academic Press, Dordrecht, pp 79–81Google Scholar
  5. 5.
    Harada A, Furue M, Nozakura SI (1976) Cyclodextrin-containing polymers: 1. Preparation of polymers. Macromolecules 9:701–704CrossRefGoogle Scholar
  6. 6.
    Harada A, Furue M, Nozakura SI (1977) Interaction of cyclodextrin-containing polymers with fluorescence compounds. Macromolecules 10:676–681CrossRefGoogle Scholar
  7. 7.
    Sreenivasan K (1997) On the restriction of the release of water-soluble component from polyvinyl alcohol film by blending β-cyclodextrin. J Appl Polym Sci 65:1829–1832CrossRefGoogle Scholar
  8. 8.
    Harada A, Furue M, Nozakura SJ (1978) Optical resolution of mandelic acid derivatives by column chromatography on crosslinked cyclodextrin gels. Polym Sci Polym Chem Ed 16:189–196CrossRefGoogle Scholar
  9. 9.
    He BL, Zhao X (1992) Synthesis of novel beta-cyclodextrin polymer. Sci China (Ser B) 12:1240–1247Google Scholar
  10. 10.
    Crini G, Janus L, Morcellet M, Torri G, Naggi A, Bertini S, Vecchi C (1998) Macroporous polyamines containing cyclodextrin: synthesis, characterization, and sorption properties. J Appl Polym Sci 68:1973–1978CrossRefGoogle Scholar
  11. 11.
    Hanessian S, Benalil A, Laferriers C (1995) The synthesis of functionalized cyclodextrins as scaffolds and templates for molecular diversity, catalysis, and inclusion phenomena. J Org Chem 60:4786–4797CrossRefGoogle Scholar
  12. 12.
    Mosbach K, Andersson L (1977) Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 270:259–261CrossRefGoogle Scholar
  13. 13.
    Pinho MS, Gregori ML, Nunes RCR, Soares BG (2001) Aging effect on the reflectivity measurements of polychloroprene matrices containing carbon black and carbonyl-iron powder. Polym Degrad Stab 73:1–5CrossRefGoogle Scholar
  14. 14.
    Katz E, Weizmann H, Willner I (2005) Magnetoswitchable reactions of DNA monolayers on electrodes: gating the processes by hydrophobic magnetic nanoparticles. J Am Chem Soc 17:9191–9200CrossRefGoogle Scholar
  15. 15.
    Cheng GF, Zhao J, Tu YH, He PG, Fang YZ (2005) A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal Chim Acta 533:11–16CrossRefGoogle Scholar
  16. 16.
    Jain TK, Roy I, De TK, Maitra A (1998) Nanometer silica particles encapsulating active compounds: a novel ceramic drug carrier. J Am Chem Soc 120:11092–11095CrossRefGoogle Scholar
  17. 17.
    Aoyama Y, Kanamori T, Nakai T, Sasaki T, Horiuchi S, Sando S, Niidome T (2003) Artificial viruses and their application to gene delivery: size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc 125:3455–3457CrossRefGoogle Scholar
  18. 18.
    Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445CrossRefGoogle Scholar
  19. 19.
    Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540CrossRefGoogle Scholar
  20. 20.
    Lai C, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459CrossRefGoogle Scholar
  21. 21.
    Berensmeier S (2006) Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 73:495–504CrossRefGoogle Scholar
  22. 22.
    Cornell RM, Schwertmann U (1996) The iron oxides. Verlagsgesellschaft VCH, WeinheimGoogle Scholar
  23. 23.
    Hunter RJ (1987) Foundations of colloid science, vol I. Clarendon Press, OxfordGoogle Scholar
  24. 24.
    Shi DL, He P (2004) Surface modifications of nanoparticles and nanotubes by plasma polymerization. Rev Adv Mater Sci 7:97–107CrossRefGoogle Scholar
  25. 25.
    Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci 3:66–73CrossRefGoogle Scholar
  26. 26.
    Kumar RV, Koltypin Y, Cohen YS, Cohen Y, Aurbach D, Palchik O, Felner I, Gedanken A (2000) Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J Mater Chem 10:1125–1129CrossRefGoogle Scholar
  27. 27.
    Cao HN, He J, Deng L, Gao XQ (2009) Fabrication of cyclodextrin-functionalized super-paramagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. J Appl Surf Sci 255:7974–7980CrossRefGoogle Scholar
  28. 28.
    Banerjee SS, Chen DH (2009) Cyclodextrin-conjugated nanocarrier for magnetically guided delivery of hydrophobic drugs. J Nanopart Res 11:2071–2078CrossRefGoogle Scholar
  29. 29.
    Banerjee SS, Chen DH (2007) Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem Mater 19:6345–6349CrossRefGoogle Scholar
  30. 30.
    Xia HB, Yi JB, Foo PS, Liu BH (2007) Facile fabrication of water-soluble magnetic nanoparticles and their spherical aggregates. Chem Mater 19:4087–4091CrossRefGoogle Scholar
  31. 31.
    Martel B, Leckchiri Y, Pollet A, Morcellet M (1995) Cyclodextrin-poly(vinylamine) systems-I. Synthesis, characterization and conformational properties. Eur Polym J 31:1083–1088CrossRefGoogle Scholar
  32. 32.
    Xu WY, Demas JN, Degraff BA, Whaley M (1993) Interactions of pyrene with cyclodextrins and polymeric cyclodextrins. J Phys Chem 97:6546–6554CrossRefGoogle Scholar
  33. 33.
    Zhi JG, Tian XL, Zhao W, Shen JB, Tong B, Dong YP (2008) Self-assembled film based on carboxymethyl-beta-cyclodextrin and diazoresin and its binding properties for methylene blue. J Colloid Interface Sci 319:270–276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ruixue Li
    • 1
  • Shumei Liu
    • 1
  • Jianqing Zhao
    • 1
  • Hideyuki Otsuka
    • 2
  • Atsushi Takahara
    • 2
  1. 1.College of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
  2. 2.Institute for Materials Chemistry and EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations