Polymer Bulletin

, Volume 66, Issue 8, pp 1089–1098 | Cite as

Investigation of polymer blends of polyamide-6 and poly(methyl methacrylate) synthesized by RAFT polymerization

  • Abbas A. Khaydarov
  • Algy Kazlauciunas
  • Philip E. Mounterey
  • Sébastien PerrierEmail author


Morphological and thermal properties of immiscible and incompatible polymer blends of commercial polyamide-6 (PA-6) and poly(methyl methacrylate) (PMMA) synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization have been studied in the presence of a compatibilizer consisting of either a random copolymer of styrene-maleic anhydride (SMA) or a diblock copolymer poly(methyl methacrylate) and polystyrene (PMMA-PS) also synthesized via RAFT polymerization. Blends of PA-6/PMMA were obtained by extrusion mixing. During melt compounding in the extruder, the functional groups of the polymer components were reacted in the presence of a compatibilizer, which changed considerably the morphology of the blend. After compatibilization, particles of PMMA in the PA-6 were smaller and better dispersed. The morphology and thermal properties of the blends were characterized using scanning electron microscopy (SEM) and differential scanning calorimetry (DCS).


Polyamide-6 PMMA Compatibilization Morphology 



A. A. Khaydarov acknowledges the Royal Society for funding an International Incoming Short Visit to the University of Leeds. PEM thanks the EPSRC and Unilever for the provision of a scholarship. The authors thank Dr John Embery for assistance with the extrusion process.


  1. 1.
    Paul DR, Newman S (1978) Polymer blends. Academic Press, New YorkGoogle Scholar
  2. 2.
    Utracki LA (1989) Polymer alloys and blends. Hanser Publishers, MunichGoogle Scholar
  3. 3.
    Yonjin L, Hiroshu S (2004) Polymer 45:7381–7388CrossRefGoogle Scholar
  4. 4.
    Carone E Jr, Felisberti MI, Pereira Nunes S (1998) J Mater Sci 33:3729–3735CrossRefGoogle Scholar
  5. 5.
    Wilkinson AN, Ryan AJ (1998) Polymer processing: structure development. Kluwer, DordrechtGoogle Scholar
  6. 6.
    Pernot H, Baumert M, Court F, Leibler L (2002) Nat Mater 1:54–58CrossRefGoogle Scholar
  7. 7.
    Groeninckx G, Harrats C, Thomas S (2001) Reactive blending with immiscible functional polymers: molecular, morphological and interface aspects. In: Baker WE, Scott C, Hua GH (eds) Reactive polymer blending. Hanser Publishers, MunichGoogle Scholar
  8. 8.
    Harrats C, Dedecker K, Groeninckx G, Jerome R (2003) Macromol Symp 198:183–196CrossRefGoogle Scholar
  9. 9.
    Shull KR, Kramer EJ (1990) Macromolecules 23:4769–4779CrossRefGoogle Scholar
  10. 10.
    Nakayama A, Inoue T, Guegan P, Macosko CW (1993) Polym Prepr 34:840–841Google Scholar
  11. 11.
    Adedeji A, Lyu S, Macosko CW (2001) Macromolecules 34:8663–8668CrossRefGoogle Scholar
  12. 12.
    Wu T, Xie T, Yang GJ (2009) Appl Polym Sci 111:101–107CrossRefGoogle Scholar
  13. 13.
    Takolpuckdee P, Mars CA, Perrier S, Archibald SJ (2005) Macromolecules 38(4):1057–1060CrossRefGoogle Scholar
  14. 14.
    Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Macromolecules 37:2709–2717CrossRefGoogle Scholar
  15. 15.
    Legge TM, Slark AT, Perrier S (2006) J Polym Sci A Polym Chem 44(24):6980–6987CrossRefGoogle Scholar
  16. 16.
    Dedeker K, Groeninckx G (1998) Polymer 39:4985–4992CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Abbas A. Khaydarov
    • 1
  • Algy Kazlauciunas
    • 2
  • Philip E. Mounterey
    • 2
  • Sébastien Perrier
    • 3
    Email author
  1. 1.Department of Natural ScienceUniversity of Information TechnologyFerganaUzbekistan
  2. 2.Department of Polymer and Colour ChemistryUniversity of LeedsLeedsUK
  3. 3.Key Centre for Polymers & Colloids, School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations