Polymer Bulletin

, Volume 66, Issue 7, pp 939–953 | Cite as

Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends

  • Gursewak Singh
  • Haripada Bhunia
  • Anita Rajor
  • Veena Choudhary
Original Paper

Abstract

Melt blending of linear low density polyethylene (LLDPE) and polylactide (PLLA) was performed in an extrusion mixer with post extrusion blown film attachment with and without compatibilizer-grafted low density polyethylene maleic anhydride. The blend compositions were optimized for tensile properties as per ASTM D 882-91. Based on this, LLDPE 80 (80 wt% LLDPE & 20 wt% PLLA) and M-g-L 80/4 (80 wt% LLDPE, 20 wt% PLLA and 4 parts compatibilizer per hundred parts of resin) were found to be an optimum composition. FTIR reveals that the presence of compatibilizer shifts carbonyl peak hence some increase in interaction between LLDPE and PLLA. Morphological characteristics of the fracture surface of with and without compatibilizer blends were examined by scanning electron microscopy. It shows that use of compatibilizer enhances the dispersions of PLLA in LLDPE matrix. Thermogravimetric (TG) analysis of blends shows the M-g-L 80/4 blend has higher thermal stability among studied blends. The degradation study under different pH of soil compost gives that in alkaline condition and the presence of compatibilizer was favorable for degradation. This blend may be used for packaging application.

Keywords

Poly(l-lactic acid) Linear low density polyethylene Blending Thermal stability Soil compost 

Notes

Acknowledgment

The authors are thankful to the All India Council of Technical Education (AICTE), New Delhi, for part funding the project and Pluss Polymers, New Delhi for gifting the compatibilizer.

References

  1. 1.
    Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly(lactic acid): a review. Polym Rev 45(4):325–349Google Scholar
  2. 2.
    Albertsson AC, Barenstedt C, Karlsson S, Lindberg T (1995) Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene. Polymer 36(16):3075–3083CrossRefGoogle Scholar
  3. 3.
    Maiti S, Jana T (2005) Biodegradable polymers: polymer recycle and waste management. Anusandhan Prakashan, Midnapore, West BengalGoogle Scholar
  4. 4.
    Omura M, Tsukegi T, Shirai Y, Nishida H, Endo T (2006) Thermal degradation behavior of poly(lactic acid) in a blend with polyethylene. Ind Eng Chem Res 45(9):2949–2953CrossRefGoogle Scholar
  5. 5.
    Rosa DS, Neto IC, Calil MR, Pedroso AG, Fonseca CP, Neves S (2004) Evaluation of the thermal and mechanical properties of poly(ε-caprolactone), low-density polyethylene, and their blends. J Appl Polym Sci 91(6):3909–3914CrossRefGoogle Scholar
  6. 6.
    Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Progr Polym Sci 27(6):1123–1163CrossRefGoogle Scholar
  7. 7.
    Kelly S, Anderson Marc, Hillmyer A (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45:8809–8823CrossRefGoogle Scholar
  8. 8.
    Ruckenstein E, Yuan Y (1998) Molten ring-open copolymerization of l-lactide and cyclic trimethylene carbonate. J Appl Polymer Sci 69(7):1429–1434CrossRefGoogle Scholar
  9. 9.
    Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K et al (2003) Thermal and mechanical properties of plasticized poly(l-lactic acid). J Appl Polym Sci 90(7):1731–1738CrossRefGoogle Scholar
  10. 10.
    Anderson KS, Lim SH, Hillmyer MA (2003) Toughening of polylactide by melt blending with linear low-density polyethylene. J Appl Polym Sci 89(14):3757–3768CrossRefGoogle Scholar
  11. 11.
    Focarete ML, Scandola M, Dobrzynski P, Kowalczuk M (2002) Miscibility and mechanical properties of blends of (l)-lactide copolymers with atactic poly(3-hydroxybutyrate). Macromolecules 35(22):8472–8477CrossRefGoogle Scholar
  12. 12.
    Kim KS, Chin IJ, Yoon JS, Choi HJ, Lee DC, Lee KH (2001) Crystallization behavior and mechanical properties of poly(ethylene oxide)/poly(l-lactide)/poly(vinyl acetate) blends. J Appl Polym Sci 82(14):3618–3626CrossRefGoogle Scholar
  13. 13.
    Wang Y, Hillmyer MA (2001) Polyethylene-poly(l-lactide) diblock copolymers: Synthesis and compatibilization of poly(l-lactide)/polyethylene blends. J Polym Sci Polym Chem 39(16):2755–2766CrossRefGoogle Scholar
  14. 14.
    Aslan S, Calandrelli L, Laurienzo P, Malinconico M, Migliaresi C (2000) Poly (d, l-lactic acid)/poly(ε-caprolactone), blend membranes: preparation and morphological characterisation. J Mater Sci 35(7):1615–1622CrossRefGoogle Scholar
  15. 15.
    Maglio G, Malinconico M, Migliozzi A, Groeninckx G (2004) Immiscible poly(l-lactide)/poly(ε-caprolactone) blends: influence of the addition of a poly(l-lactide)-poly(oxyethylene) block copolymer on thermal behavior and morphology. Macromol Chem Phys 205(7):946–950CrossRefGoogle Scholar
  16. 16.
    Avella M, Errico ME, Immirzi B, Malinconico M, Falcigno L, Paolillo L (2000) Radical polymerization of methyl methacrylate in the presence of biodegradable poly(l-lactic acid): preparation of blends, chemical–physical characterization and morphology. Macromol Chem Phys 201(12):1295–1302CrossRefGoogle Scholar
  17. 17.
    Jiang L, Wolcott MP, Zhang J (2005) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7(1):199–207CrossRefGoogle Scholar
  18. 18.
    Yang L, Zhang F, Endo T, Hirotsu T (2003) Microstructure of maleic anhydride grafted polyethylene by high-resolution solution-state NMR and FTIR spectroscopy. Macromolecules 36(13):4709–4718CrossRefGoogle Scholar
  19. 19.
    Márquez L, Sabino MA, Rivero IA (1998) Characterization of PET/LLDPE blends compatibilized with DEM-grafted-polyethylene. Polym Bull 41(2):191–198CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gursewak Singh
    • 1
  • Haripada Bhunia
    • 1
  • Anita Rajor
    • 2
  • Veena Choudhary
    • 3
  1. 1.Department of Chemical EngineeringThapar UniversityPatialaIndia
  2. 2.Department of Biotechnology & Environmental SciencesThapar UniversityPatialaIndia
  3. 3.Centre for Polymer Science and EngineeringIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations