Polymer Bulletin

, Volume 65, Issue 4, pp 363–375

Comparative study of aromatic polyimides containing methylene units

  • Ion Sava
  • Ştefan Chişcă
  • Maria Brumă
  • Gabriela Lisa
Article

Abstract

Two series of aromatic polyimides have been synthesized by solution polycondensation of certain aromatic dianhydrides with two aromatic diamines containing methylene groups; one of the diamines has also a methyl substituent on each benzene ring. These polymers have been studied with regard to their solubility, thermal stability, film forming ability, and mechanical properties of their films.

Keywords

Aromatic polyimides Methylene bridges High thermal stability 

References

  1. 1.
    Gosh MK, Mittal KL (1996) Polyimides: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Liaw DJ, Chen WH, Huang CC (2003) Novel poly(pyridine imide) with pendent naphthalene groups. In: Mittal KL (ed) Polyimides and other high-temperature polymers, vol 2. VSP Publisher, Utrecht, pp 47–70Google Scholar
  3. 3.
    Sava I, Resmerita AM, Lisa G, Damian V, Hurduc N (2008) Synthesis and photochromic behavior of new polyimides containing azobenzene side groups. Polymer 49:1475–1482CrossRefGoogle Scholar
  4. 4.
    Sava I, Sacarescu L, Stoica I, Apostol I, Damian V, Hurduc N (2009) Photochromic properties of polyimides and polysiloxane azopolymers. Polym Int 58:163–170CrossRefGoogle Scholar
  5. 5.
    Sroog CE (1991) Polyimides. Prog Polym Sci 16:561–694CrossRefGoogle Scholar
  6. 6.
    Hasegawa M, Horie K (2001) Photophysics, photochemistry, and optical properties of polyimides. Prog Polym Sci 26:259–335CrossRefGoogle Scholar
  7. 7.
    Hergenrother PM (2003) The use, design, synthesis and properties of high performance/high temperature polymers: an overview. High Perform Polym 15:3–45Google Scholar
  8. 8.
    Rebeiz GM, Tan GL (2003) Introduction to RF MEMS for microwave applications, RF MEMS theory, design, and technology. Wiley, Hoboken, New JerseyGoogle Scholar
  9. 9.
    Bruma M, Sava I, Hamciuc E, Hamciuc C, Damaceanu MD (2006) Synthesis and characterization of heterocyclic polyimides as high performance materials with potential applications in RF MEMS devices processing. Rom J Inform Sci Technol 9:277–284Google Scholar
  10. 10.
    Liaw DJ, Liaw BY, Hsu PN, Hwang CY (2001) Synthesis and characterization of new highly organosoluble poly(ether-imide)s bearing a noncoplanar 2, 2′-dimethyl-4, 4′-biphenyl unit and kink diphenylmethane linkage. Chem Mater 13:1811–1816CrossRefGoogle Scholar
  11. 11.
    Liaw DJ, Chang FC, Leung M, Chou MY, Muellen K (2005) High thermal stability and rigid rod of novel organosoluble polyimides and polyamides based on bulky and noncoplanar naphthalene-biphenyldiamine. Macromolecules 38:4024–4029CrossRefGoogle Scholar
  12. 12.
    Zhao G, Ishizaka T, Kasai I, Oikawa I, Nakanishi I (2007) Fabrication of unique porous polyimide nanoparticles using a reprecipitation method. Chem Mater 19:1901–1905CrossRefGoogle Scholar
  13. 13.
    Ge Z, Fan L, Yang S (2008) Synthesis and characterization of novel fluorinated polyimides derived from 1, 1′-bis(4-aminophenyl)-1-(3-trifluoromethylphenyl)-2, 2, 2-trifluoroethane and aromatic dianhydrides. Eur Polym J 44:1252–1260CrossRefGoogle Scholar
  14. 14.
    Zhao G, Ishizaka T, Kasai I, Hasegawa M, Nakanishi I, Oikawa H (2009) Using a polyelectrolyte to fabricate porous polyimide nanoparticles with crater-like pores. Polym Adv Technol 20:43–47CrossRefGoogle Scholar
  15. 15.
    Lu QH, Yin J, Xu HJ, Zhang JM, Sun LM, Zhu ZK, Wang ZG (1999) Preparation and properties of organo-soluble polyimides based on 4, 4′-diamino-3, 3′-dimethyldiphenylmethane and conventional dianhydrides. J Appl Polym Sci 72:1299–1304CrossRefGoogle Scholar
  16. 16.
    Sava I (2006) Synthesis and study of some aromatic polyimides based on 3, 3’-dimethyl-4, 4′-diaminodiphenylmethane. Mater Plast 43:15–19Google Scholar
  17. 17.
    Hypercube Inc. (Ontario) (2002) Hyperchem Version 7.5Google Scholar
  18. 18.
    Bruma M, Hamciuc E, Sava I, Hamciuc C, Iosip MD, Robison J (2003) Compared properties of polyimides based on benzophenonetetracarboxylic dianhydride. Rev Roum Chim 48:629–638Google Scholar
  19. 19.
    Bruma M, Fitch J, Cassidy P (1996) Hexafluoro-isopropylidene-containing polymers for high performance applications. J Macromol Sci Rev Macromol Chem Phys C 36:119–159Google Scholar
  20. 20.
    Shang XY, Zhu ZK, Yin J, Ma XD (2002) Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater 14:71–77CrossRefGoogle Scholar
  21. 21.
    Hsiao SH, Yang CP, Chu KY (1997) Synthesis and properties of poly(ether-imide)s having ortho-linked aromatic units in the main chain. Macromolecules 30:165–170CrossRefGoogle Scholar
  22. 22.
    Vyazovkin S, Dranca I, Fan X, Advincula R (2004) Kinetics of the thermal and thermo-oxidative degradation of a polystyrene–clay nanocomposite. Macromol Rapid Commun 25:498–503CrossRefGoogle Scholar
  23. 23.
    Freeman ES, Carrroll B (1958) The application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J Phys Chem 62:394–397CrossRefGoogle Scholar
  24. 24.
    Chern YT, Shiue HC (1997) Low dielectric constants of soluble polyimides based on adamantane. Macromolecules 30:4646–4651CrossRefGoogle Scholar
  25. 25.
    Chern YT, Ju MH (2009) Conformation of polyimide backbone structures for determination of the pretilt angle of liquid crystals. Macromolecules 42:169–179CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ion Sava
    • 1
  • Ştefan Chişcă
    • 1
  • Maria Brumă
    • 1
  • Gabriela Lisa
    • 2
  1. 1.Petru Poni Institute of Macromolecular ChemistryIasiRomania
  2. 2.Department of Natural and Synthetic PolymersGheorghe Asachi Technical University IasiIasiRomania

Personalised recommendations