Advertisement

Polymer Bulletin

, Volume 65, Issue 8, pp 753–766 | Cite as

The effect of chain extenders structure on properties of new polyurethane elastomers

  • Stefan Oprea
Original Paper

Abstract

Two series of polyurethane elastomers were synthesized to investigate what effect does the incorporation of various new chain extenders have on the mechanical and thermal properties of polyurethane elastomers. The polyurethane soft segments were based on poly(ε-caprolactone) polyol. The hard segment was based on 1,6-hexamethylene diisocyanate in combination with 2,5-dimethyl-3-hexine-2,5-diol (DHD), hexaethylene glycol, glycerin, or castor oil. The results showed that the degradation rate and mechanical properties of the final products can be controlled through the structure of diol chain extenders or/and hard segment cross-linking present in the polyurethane elastomers. The DHD-based polyurethane displayed a relatively low glass transition temperature of −57 °C and a tensile strength of 11–14 MPa and elongation at break of 600–700%. These kinds of materials have potential application in many domains.

Keywords

Polyurethane elastomers Chain extenders Cross-linker Mechanical properties 

Notes

Acknowledgment

The author gratefully acknowledges Dr. Mariana Cristea for her assistance with the DMA measurements.

References

  1. 1.
    Hepburn C (1991) Polyurethane elastomers, 2nd edn. Elsevier, LondonGoogle Scholar
  2. 2.
    Zhang H, Chen Y, Zhang Y, Sun X, Ye H, Li W (2008) Synthesis and characterization of polyurethane elastomers. J Elastom Plast 40:161–177CrossRefGoogle Scholar
  3. 3.
    Gorrasi G, Tortora M, Vittoria V (2005) Synthesis and physical properties of layered silicates/polyurethane nanocomposites. J Polym Sci B 43:2454–2467CrossRefGoogle Scholar
  4. 4.
    Velankar S, Cooper SL (2000) Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules 33:382–394CrossRefGoogle Scholar
  5. 5.
    Kim CK, Bae SB, Ahn JR, Chung IJ (2008) Structure–property relationships of hydroxy-terminated polyether based polyurethane network. Polym Bull 61:225–233CrossRefGoogle Scholar
  6. 6.
    Skarja GA, Woodhouse KA (2000) Structure–property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci 75:1522–1534CrossRefGoogle Scholar
  7. 7.
    Woo GLY, Mittelman MW, Santerre JP (2000) Synthesis and characterization of a novel biodegradable antimicrobial polymer. Biomaterials 21:1235–1246CrossRefGoogle Scholar
  8. 8.
    Hasirci N, Aksoy EA (2007) Synthesis and modifications of polyurethanes for biomedical purposes. High Perform Polym 19:621–637CrossRefGoogle Scholar
  9. 9.
    d’Arlas BF, Rueda L, Caba K, Mondragon I, Eceiza A (2008) Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI. Polym Eng Sci 48:519–529CrossRefGoogle Scholar
  10. 10.
    Marcos-Fernandez A, Abraham GA, Valentin JL, San Roman J (2006) Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly(-caprolactone) and amino acid derivatives. Polymer 47:785–798CrossRefGoogle Scholar
  11. 11.
    Gorna K, Gogolewski S (2003) Molecular stability, mechanical properties, surface characteristics and sterility of biodegradable polyurethanes treated with low-temperature plasma. Polym Degrad Stab 79:475–485CrossRefGoogle Scholar
  12. 12.
    Heijkants GJC, Calck RV, Tienen TG, Groot JH, Buma P, Pennings AJ, Veth PH, Schouten AJ (2005) Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(caprolactone) and 1, 4-butane diisocyanate with uniform hard segment. Biomaterials 26:4219–4228CrossRefGoogle Scholar
  13. 13.
    Hatakeyama T, Izuta Y, Hirose S, Hatakeyama H (2002) Phase transitions of lignin-based polycaprolactones and their polyurethane derivatives. Polymer 43:1177–1182CrossRefGoogle Scholar
  14. 14.
    Wang W, Ping P, Chen X, Jing X (2007) Shape memory effect of poly(L-lactide)-based polyurethanes with different hard segments. Polym Int 56:840–846CrossRefGoogle Scholar
  15. 15.
    Labow R, Sa D, Matheson L, Santerre J (2005) Polycarbonate-urethane hard segment type influences esterase substrate specificity for human-macrophage-mediated biodegradation. J Biomater Sci Polym Ed 9:1167–1177CrossRefGoogle Scholar
  16. 16.
    McBane J, Santerre J, Labow R (2007) The interaction between hydrolytic and oxidative pathways in macrophage-mediated polyurethane degradation. J Biomed Mater Res 82A(4):984–994CrossRefGoogle Scholar
  17. 17.
    Zapletalova T, Michielsen S, Pourdeyhimi B (2006) Polyether based thermoplastic polyurethane melt blown nonwovens. J Eng Fibers Fabr 1:62–72Google Scholar
  18. 18.
    Oprea S (2007) Synthesis and characterization of polyurethane-urea-acrylates: effects of the hard segments structure. J Appl Polym Sci 105(5):2509–2515CrossRefGoogle Scholar
  19. 19.
    Fu BX, Hsiao BS, White H, Rafailovich M, Mather PT, Jeon HG, Phillips S, Lichtenhan J, Schwab J (2000) Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polym Int 49:437–440CrossRefGoogle Scholar
  20. 20.
    Tang Y, Labow R, Santerre J (2001) Enzyme-induced biodegradation of polycarbonate-polyurethanes: dependence on hard-segment chemistry. J Biomed Mater Res 57:597–611CrossRefGoogle Scholar
  21. 21.
    Erbil H (1997) Surface tension of polymers in handbook of surface and colloid chemistry. CRC Press, New YorkGoogle Scholar
  22. 22.
    Lligadas G, Ronda JC, Gali M, Cadiz V (2007) Polyurethane networks from fatty-acid-based aromatic triols: synthesis and characterization. Biomacromolecules 8(6):1858–1864CrossRefGoogle Scholar
  23. 23.
    Zhang C, Ren Z, Yin Z, Qian H, Ma D (2008) Amide II and amide III bands in polyurethane model soft and hard segments. Polym Bull 60:97–101CrossRefGoogle Scholar
  24. 24.
    Papadimtrakopoulos F, Sawa E, MacKnight WJ (1992) Investigation of a monotropic liquid crystal polyurethane based on biphenol, 2, 6-tolylene diisocyanate, and a six methylene containing flexible spacer. 2. IR spectroscopic phase characterization. Macromolecules 25:4682–4691CrossRefGoogle Scholar
  25. 25.
    Chamberlim Y, Pascault JP (1984) Phase separation kinetics in segmented linear polyurethanes: relation between equilibrium time and chain mobility and between equilibrium degree of segregation and interaction parameter. J Polym Sci Polym Phys 22:1835–1844Google Scholar
  26. 26.
    Meng Q, Hu J, Zhu Y, Lu J, Liu Y (2007) Polycaprolactone-based shape memory segmented polyurethane fiber. J Appl Polym Sci 106:2515–2523CrossRefGoogle Scholar
  27. 27.
    Li J (2006) High performance epoxy resin nanocomposites containing both organic montmorillonite and castor oil-polyurethane. Polym Bull 56:377–384CrossRefGoogle Scholar
  28. 28.
    Oprea S (2008) Effect of the diisocyanate and chain extenders on the properties of the cross-linked polyetherurethane elastomers. J Mater Sci 43:5274–5281CrossRefGoogle Scholar
  29. 29.
    Chang EJ, Kim HH, Huh JE, Kim IA, Seung KJ, Chung CP, Kim HM (2005) Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras signaling. Exp Cell Res 303(1):197–206Google Scholar
  30. 30.
    Erbil HY (2006) Surface chemistry of solid and liquid interfaces. Blackwell, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations