Polymer Bulletin

, 63:921 | Cite as

Effect of PEgMA/amine silane compatibilizer on clay dispersion of polyethylene-clay nanocomposites

  • S. Sánchez-ValdesEmail author
  • J. Méndez-Nonell
  • F. J. Medellín-Rodríguez
  • E. Ramírez-Vargas
  • J. G. Martínez-Colunga
  • H. Soto-Valdez
  • L. Muñoz-Jiménez
  • G. Neira-Velázquez
Original Paper


The compatibilization effects provided by an amine silane modified polyethylene (PEgAS) versus those by a maleated polyethylene (PEgMA), for forming PE–clay based nanocomposites, were studied. PEgAS was prepared by condensation reaction between PEgMA and g-(aminopropyl) triethoxy silane (APTS). It had the triethoxy-silane functionality on one end and was solution mixed with an organomodified clay (Cloisite 20A) to promote the reaction of the silane groups with the hydroxyl groups on the surface of the clay. The obtained masterbatches were then compounded with PE to obtain PE–clay nanocomposites by melt blending in a twin screw extruder, using different compatibilizers and clay contents. FTIR, XRD, STEM, and Instron were used to characterize the structural, morphological, and mechanical properties of the nanocomposites. Results showed that the PEgAS formed more exfoliated–intercalated morphology and better mechanical properties, especially in modulus and tensile strength as compared with PEgMA composites and neat PE. The Young modulus was 35% higher, and the tensile strength was 18% higher with PEgAS composites.


Amine silane Nanoclays Polyethylene Compatibilizer 



The authors gratefully acknowledge the financial support of CONACyT (CB-2005-C-24605) and would also like to thank A. Herrera-Guerrero, M. C. Gonzalez-Cantu, J. Zamora-Rodriguez, J. A. Sanchez-Molina, M. Lozano-Estrada, M. L. Lopez-Quintanilla, G. Mendez-Padilla, J. Rodriguez-Velázquez and J. F. Zendejo-Rodriguez for their assistance in the sample preparation and characterization and to T. Trejo-Villanueva and P. Flores-Siller for their assistance in technical data acquisition.


  1. 1.
    Hadal R, Yuan Q, Jog JP, Misra RDK (2006) On stress whitening during surface deformation in clay-containing polymer nanocomposites: a microstructural approach. Mater Sci Eng A 418:268CrossRefGoogle Scholar
  2. 2.
    Yuan Q, Awate S, Misra RDK (2006) Nonisothermal crystallization behavior of polypropylene-clay nanocomposites. Eur Polym J 42:1994CrossRefGoogle Scholar
  3. 3.
    Zhang J, Jiang DD, Wilkie CA (2006) Polyethylene and polypropylene nanocomposites based on a three component oligomerically-modified clay. Polym Deg Stab 91:641CrossRefGoogle Scholar
  4. 4.
    Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR (2002) Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43:5915CrossRefGoogle Scholar
  5. 5.
    Fornes TD, Paul DR (2004) Structure and properties of nanocomposites based on nylon-11 and -12 compared with those based on nylon-6. Macromolecules 37:7698CrossRefGoogle Scholar
  6. 6.
    Lan T, Kaviratna PD, Pinnavaia TJ (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem Mater 7:2144CrossRefGoogle Scholar
  7. 7.
    Fornes TD, Hunter DL, Paul DR (2004) Nylon-6 nanocomposites from alkylammonium-modified clay: the role of alkyl tails on exfoliation. Macromolecules 37:1793CrossRefGoogle Scholar
  8. 8.
    Hussain F, Hojjati M (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511CrossRefGoogle Scholar
  9. 9.
    Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR (2001) Effect of melt processing conditions on the extent of exfoliation in organoclay based nanocomposites. Polymer 42:9513CrossRefGoogle Scholar
  10. 10.
    Rosoff M (2002) Nanosurface chemistry. Marcel Dekker, Inc., New YorkGoogle Scholar
  11. 11.
    Wang Y, Chen FB, Wu KC, Wang JC (2006) Shear rheology and melt compounding of compatibilized-polypropylene nanocomposites: effect of compatibilizer molecular weight. Polym Eng Sci 46:289CrossRefGoogle Scholar
  12. 12.
    Modesti M, Lorenzetti A, Bon D, Besco S (2005) Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposites. Polymer 46:10237CrossRefGoogle Scholar
  13. 13.
    Varela C, Rosales C, Perera R, Matos M, Poirier T, Blunda J (2006) Functionalized polypropylenes in the compatibilization and dispersion of clay nanocomposites. Polym Compos 27:451CrossRefGoogle Scholar
  14. 14.
    Lopez ML, Sanchez S, Ramos LF, Guedea R (2006) Preparation and mechanical properties of PP/PP-g-MA/Org-MMT nanocomposites with different MAcontent. Polym Bull 57:385CrossRefGoogle Scholar
  15. 15.
    Chavarria F, Paul DR (2004) Comparison of nanocomposites based on nylon 6 and nylon 66. Polymer 45:8501CrossRefGoogle Scholar
  16. 16.
    Cui L, Paul DR (2007) Evaluation of amine functionalized polypropylenes as compatibilizers for polypropylene nanocomposites. Polymer 48:1632CrossRefGoogle Scholar
  17. 17.
    Lu QW, Macoscko CW, Horrion J (2005) Melt amination of polypropylenes. J Polym Sci A 43:4217CrossRefGoogle Scholar
  18. 18.
    Wu JY, Wu TM, Chen WY, Tsai SJ, Kuo WF, Chang GY (2005) Preparation and characterization of PP/clay nanocomposites based on modified polypropylene and clay. J Polym Sci B 43:3242CrossRefGoogle Scholar
  19. 19.
    Garcia Lopez Picazo O, Merino JC, Pastor JM (2003) Polypropylene clay nanocomposites: effect of compatibilizing agents on clay dispersion. Eur Polym J 39:945Google Scholar
  20. 20.
    Liaw WC, Huang PC, Chen CS, Lo CL, Chang JL (2008) PPgMA/APTS compound coupling compatibilizer in PP/clay hybrid nanocomposite. J Appl Polym Sci 109:1871CrossRefGoogle Scholar
  21. 21.
    Herrera NN, Letoffe JM, Putaux JL, David L, Bourgeat-Lami E (2004) Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir 20:1564CrossRefGoogle Scholar
  22. 22.
    Wang L, Sheng J (2003) Graft polymerization and characterization of butyl acrylate onto silane-modified attapulgite. J Macromol Sci A 40:1135CrossRefGoogle Scholar
  23. 23.
    Wang L, Sheng J (2005) Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer 46:6243CrossRefGoogle Scholar
  24. 24.
    Seckin T, Gultek A, Icduygu MG, Onal Y (2002) Polymerization and characterization of acrylonitrile with methacryloxypropyltrimethoxy-silane grafted bentonite clay. J Appl Polym Sci 84:164CrossRefGoogle Scholar
  25. 25.
    Cornelius CJ, Marand E (2002) Hybrid inorganic-organic materials based on a 6FDA-6FpDA-DABA polyimide and silica: physical characterization studies. Polymer 43:2385CrossRefGoogle Scholar
  26. 26.
    Barsbay M, Can HK, Guner A, Rzaev ZMO (2005) Synthesis of new hydrogels based on the macromolecular reaction of citraconic anhydride copolymers with aminopropyltriethoxysilane (APTS). Polym Adv Technol 16:32CrossRefGoogle Scholar
  27. 27.
    Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30:8000CrossRefGoogle Scholar
  28. 28.
    LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11CrossRefGoogle Scholar
  29. 29.
    Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31CrossRefGoogle Scholar
  30. 30.
    Sanchez S, Lopez ML, Ramirez E, Medellin FJ, Gutierrez JM (2006) Effect of ionomeric compatibilizer on clay dispersion in polyethylene/clay nanocomposites. Macromol Mater Eng 291:128Google Scholar
  31. 31.
    Shah RK, Hunter DL, Paul DR (2005) Nanocomposites from poly(ethylene-co-methacrylic acid) ionomers: effect of surfactant structure on morphology and properties. Polymer 46:2646CrossRefGoogle Scholar
  32. 32.
    Yoo Y, Shah RK, Paul DR (2007) Fracture behavior of nanocomposites based on poly(ethylene-co-methacrylic acid) ionomers. Polymer 48:4867CrossRefGoogle Scholar
  33. 33.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Sánchez-Valdes
    • 1
    Email author
  • J. Méndez-Nonell
    • 1
  • F. J. Medellín-Rodríguez
    • 2
  • E. Ramírez-Vargas
    • 1
  • J. G. Martínez-Colunga
    • 1
  • H. Soto-Valdez
    • 3
  • L. Muñoz-Jiménez
    • 1
    • 2
    • 3
  • G. Neira-Velázquez
    • 1
  1. 1.Centro de Investigación en Química Aplicada (CIQA)SaltilloMexico
  2. 2.Centro de Investigación y Estudios de Posgrado, Universidad Autónoma de San Luís PotosíSan Luis PotosíMexico
  3. 3.Centro de Investigación en Alimentos y Desarrollo (CIAD)HermosilloMexico

Personalised recommendations