Polymer Bulletin

, Volume 63, Issue 4, pp 547–563 | Cite as

Thermodynamic characterization of poly (caprolactonediol) by inverse gas chromatography

  • T. V. M. Sreekanth
  • S. Ramanaiah
  • P. Reddi Rani
  • K. S. Reddy
Original Paper


Specific retention volumes, V g 0 , were determined for 21 solute probes on poly (caprolactonediol) (PCLD) in the temperature range 323.15–403.15 K by inverse gas chromatography. The retention diagrams drawn between ln V g 0 versus 1/T are linear for all the solutes since PCLD with ten repeating units in its chain behaving like a non polymeric material under the conditions applied. The stationary phase with melting temperature ~321 K is in the liquid state in the GC column over the temperature range studied and hence found to be suitable to determine infinite dilution partial molar thermodynamic properties of mixing for solutes on PCLD. The V g 0 values have been used to calculate weight fraction activity coefficients Ω and Flory–Huggins interaction parameters, χ 12 . The average partial molar enthalpy of solution, \( \overline{\Updelta H}_{1}^{S} , \) and partial molar enthalpy of mixing, \( \overline{\Updelta H}_{1}^{\infty } , \) are calculated using V g 0 and Ω respectively. The average molar enthalpy of vaporization ΔH 1 V for solutes have been calculated using \( \overline{\Updelta H}_{1}^{\infty } \) and \( \overline{\Updelta H}_{1}^{S} \) values and compared with the literature values at 363.15 K which is the average column temperature. The partial molar entropy of mixing, \( \overline{\Updelta S}_{1}^{\infty } \)calculated at 363.15 K are in good correlation with the average \( \overline{\Updelta H}_{1}^{\infty } \)values. The total solubility parameter due to Guillet and the Hansen solubility parameters (HSP) are calculated for PCLD using χ 12 values. In the present work the Hansen solubility parameters have been calculated using a new method following the Hansen theory and Huang method with less weight on polar and hydrogen bonding components. The errors in the solubility HSP are lower and the correlation coefficients are better in both the methods compared to unweighted three dimensional model.


Poly (caprolactonediol) Inverse gas chromatography Thermodynamic properties Hansen solubility parameters 



The authors (TVMS and KSR) are grateful to the University Grants Commission, New Delhi for financial support sanctioned in the form of a research project.


  1. 1.
    Guillet JE (1970) Molecular probes in the study of polymer structure. J Macromol Sci Chem 4:1669–1674CrossRefGoogle Scholar
  2. 2.
    DiPaola-Baranyi G, Guillet JE (1978) Estimation of polymer solubility parameters by gas chromatography. Macromolecules 11:228–235CrossRefGoogle Scholar
  3. 3.
    Voelkel A, Janas J (1993) Inverse gas chromatography in characterization of surfactants: determination of binary parameters. J Chromatogr A 654:135–141CrossRefGoogle Scholar
  4. 4.
    Al-Ghamdi A, Melibari M, Al-Saigh ZY (2006) Characterization of biodegradable polymers by inverse gas chromtography. II. Blends of amylopectin and poly(є-caprolactone). J Polym Environ 101:3076–3089Google Scholar
  5. 5.
    Huang JC (2004) Methods to determine solubility parameters of ploymers using inverse gas chromatography. J Appl Polym Sci 91:2894–2902CrossRefGoogle Scholar
  6. 6.
    Etxeberria A, Alfageme J, Uriarte C, Iruin JI (1992) Inverse gas chromatography in the characterization of polymeric materials. J Chromatogr 607:227–237CrossRefGoogle Scholar
  7. 7.
    Sreekanth TVM, Reddy KS (2008) Evaluation of solubility parameters for nonvolatile branched hydrocarbons by inverse gas chromatography. J Appl Polym Sci 108:1761–1769CrossRefGoogle Scholar
  8. 8.
    Sreekanth TVM, Reddy KS (2007) Analysis of solvent-solvent interactions in mixed isosteric solvents by inverse gas chromatography. Chromatographia 65:325–330CrossRefGoogle Scholar
  9. 9.
    Nastasović AB, Onjia AE (2008) Determination glass temperature of polymers by inverse gas chromatography. J Chromatogr A 1195:1–15CrossRefGoogle Scholar
  10. 10.
    Mukhopadhyay P, Schreiber HP (1995) Aspects of acid-base interactions and use of inverse gas chromatography. Colloids Surf 100:47–71CrossRefGoogle Scholar
  11. 11.
    Sun C, Berg JC (2003) A review of the different techniques for solid surface acid-base characterization. Adv Colloid Interface Sci 105:151–175CrossRefGoogle Scholar
  12. 12.
    Hansen CM (2000) Hansen solubility parameters: a user’s handbook. CRC Press, Boca RatonGoogle Scholar
  13. 13.
    Sarac A, Sakar D, Cankurtaran O, Karaman FY (2005) The ratio of crystallinity and thermodynamical interactions of polycaprolactone with some aliphatic esters and aromatic solvents by inverse gas chromatography. Polym Bull 53:349–357CrossRefGoogle Scholar
  14. 14.
    Zhao S, Zhang W, Zhang F, Li B (2008) Determination of Hansen solubility parameters for cellulose acrylate by inverse gas chromatography. Polym Bull 61:189–196CrossRefGoogle Scholar
  15. 15.
    Al-Saigh ZY (1997) Inverse gas chromatography for the characterization of polymer blends. Int J Polym Anal Charact R 3:249–291CrossRefGoogle Scholar
  16. 16.
    Santos JMRCA, Guthrie JT (2005) Analysis of interactions in multicomponent polymeric systems: the key-role of inverse gas chromatography. Mater Sci Eng R 50:79–107CrossRefGoogle Scholar
  17. 17.
    Melier MM, Kanis LA, de Lima JC, Pires ATN, Soldi V (2004) Poly(caprolactone triol) as plasticizer agent for cellulose acetate films: influence of the preparation procedure and plasticizer content on the physico-chemical properties. Polym Adv Technol 15:593–600CrossRefGoogle Scholar
  18. 18.
    Conder JR, Young CL (1979) Physico chemical measurement by gas chromatography. Wiley, NYGoogle Scholar
  19. 19.
    James AT, Martin AJP (1952) Gas liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. J Biochem 50:679–690Google Scholar
  20. 20.
    Yawa LC (1992) Thermodynamic and physical property data. Gulf Publ, HoustonGoogle Scholar
  21. 21.
    Reid CR, Prausnitz JM, Sherwood TK (1977) The properties of gases and liquids. McGrew-Hill, NYGoogle Scholar
  22. 22.
    Tsonopoulos C (1974) An empirical correlation of second virial coefficients. J AlChE 20:263–272Google Scholar
  23. 23.
    Kozlowska MK, Domanska U, Lempert M, Rogalski M (2005) Determination of thermodynamic properties isotactic poly (1-butene) at infinite dilution using density and inverse gas chromatography. J Chromatogr A 1068:297–305CrossRefGoogle Scholar
  24. 24.
    Patterson D, Tewari YB, Schreiber HP, Guillet JE (1971) Application of gas-liquid chromatography to the thermodynamics of polymer solutions. Macromolecules 4:356–359CrossRefGoogle Scholar
  25. 25.
    Hildebrand JH, Scott RW, Prausnitz JM (1972) Regular and related solutions. Van Nostrand, NYGoogle Scholar
  26. 26.
    Price GJ, Shillcock IM (2002) Inverse gas chromatographic measurement of solubility parameters in liquid crystalline systems. J Chromatogr A 964:199–204CrossRefGoogle Scholar
  27. 27.
    Huang JC (2004) Methods to determine solubility parameters of polymers at high temperature using inverse gas chromatography. J Appl Polym Sci 94:1547–1555CrossRefGoogle Scholar
  28. 28.
    Adamska K, Voelkel A (2005) Inverse gas chromatographic determination of solubility parameters of excipients. Int J of Pharm 304:11–17CrossRefGoogle Scholar
  29. 29.
    Huang JC, Deanin RD (2005) Multicomponent solubility parameters of poly(vinyl chloride) and poly(tetramethylene glycol). Fluid Phase Equilib 227:125–133CrossRefGoogle Scholar
  30. 30.
    Guillet JE (1973) In: Purenell JH (ed) New developments in gas chromatography. Wiley-Interscience, NY, p 187Google Scholar
  31. 31.
    Huang JC, Richard JS, Stanley HL (2005) Entropy-enthalpy compensations in solutions of dual character molecules with polymeric chromatographic liquid phases. J Phys Chem B 109:1736–1743CrossRefGoogle Scholar
  32. 32.
    Hansen CM, Beerbower A (1971). In: Encyclopedia of chem technology. Suppl vol 2. Wiley, NYGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • T. V. M. Sreekanth
    • 1
  • S. Ramanaiah
    • 1
  • P. Reddi Rani
    • 1
  • K. S. Reddy
    • 1
  1. 1.Department of ChemistrySri Venkateswara UniversityTirupatiIndia

Personalised recommendations